Advertisement

Clinical and epilepsy characteristics in Wolf-Hirschhorn syndrome (4p-): A review

Published:December 08, 2022DOI:https://doi.org/10.1016/j.seizure.2022.12.001

      Highlights

      • Epilepsy is one of the main neurological conditions among children with Wolf-Hirschhorn syndrome. It is mostly associated with frequent and difficult-to-control seizures, due to which long-term developmental outcomes may be impaired. In contrast, the course of epilepsy, when diagnosed efficiently by physicians and appropriate treatment is initiated, can have a good prognosis, with no cognitive deterioration. Therefore, we believe that our systematic review, in which we provide a summary of knowledge about epilepsy in WHS, its characteristics and treatment efficacy, can be a comprehensive source of information for all health care professionals who care for patients with Wolf-Hirschhorn syndrome.

      Abstract

      Wolf–Hirschhorn syndrome (WHS) is araredisorderwithan estimated prevalence being around 1 in 50,000 births. The syndrome is caused by the deletion of a critical region (Wolf–Hirschhorn Syndrome Critical region- WHSCR) on chromosome 4p16.3. WHS is clinically characterized by pre-and postnatal growth restriction, hypotonia, intellectual disability, craniofacial dysmorphismand congenital fusion anomalies. The clinical aspects are variable due to the deletion size.Consistently, epilepsy is one of the major concerns for parents and professionals caring for children with WHS. Seizures tend to occur in over 90% of patients, with onset within the first 3 years of life, and a peak incidence at around 6–12 months of age. Approximately 20% of patients had the first seizure onset within the first 6 months of age, almost 50% at 6 to 12 months of age and about 25% later than 12 months of age. The main types of epileptic seizures occurring in patients with WHS were generalized tonic–clonic seizures (around 70%). These were followed by tonic spasms (20%); focal seizures with impaired awareness (12%) and clonicseizures in 7% of patients.Seizures are often triggered by fever, followed by infections of various systems. Particularly, half of WHS patients experience status epilepticus in the first years of life, which can be fatal. Due to limited number of reports on the topic of EEG abnormalities in epilepsy among WHS patients, it is difficult to determine whether there are any characteristic deviations for WHS. Although more than 300 persons with WHS have been reported in the literature, there is sparse knowledge about epilepsy and methods of its anti-seizure medication (ASM) management with an assessment of their effectiveness. The purpose of this systematic review is to briefly summarize achievements and advances in the field of epilepsy in Wolf-Hirschhorn syndrome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seizure - European Journal of Epilepsy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Battaglia A
        • Filippi T
        • South ST
        • Carey JC
        Spectrum of epilepsy and electroencephalogram patterns in Wolf–Hirschhorn Syndrome: experience with 87 patients.
        Dev Med Child Neurol. 2009; 51: 373-380
        • Corrêa T
        • Mayndra M
        • Santos-Rebouças CB.
        Distinct epileptogenic mechanisms associated with seizures in Wolf-Hirschhorn Syndrome.
        Mol Neurobiol. 2022; 59: 3159-3169https://doi.org/10.1007/s12035-022-02792-9
        • Battaglia A
        • Carey JC
        • South ST.
        Wolf-Hirschhorn syndrome.
        (editors.)in: Pagon RAAM Ardinger HH Wallace SE Amemiya A Bean LJH Bird TD Ledbetter N Mefford HC Smith RJH Stephens KS GeneReviews. University of Washington, Seattle,WA2017
        • Kagitani-Shimono K
        • Imai K
        • Otani K
        • et al.
        Epilepsy in wolf-hirschhorn syndrome (4p-).
        Epilepsia. 2005; 46: 150-155https://doi.org/10.1111/j.0013-9580.2005.02804.x
        • Hirschhorn K
        • Cooper HL
        • Firschein IL.
        Deletion of short arms of chromosome 4-5 in a child with defects of midline fusion.
        Humangenetik. 1965; 1: 479-482
        • Wolf U
        • Reinwein H
        • Porsh R
        • Schroter R
        • Baitsch H.
        Defizienz am den kurze armen eines chromosomesnr. 4.
        Humangenetik. 1965; 1: 397-413
        • Guthrie RD
        • Aase JM
        • Asper AC
        • Smith D.
        The 4p- syndrome.
        Am J Dis Child. 1971; 122: 421-425
        • Estabrooks LL
        • Rao KW
        • Driscoll DA
        • Crandall BF
        • Dean JCS
        • Ikonen E
        • Korf B
        • Aylsworth AS.
        Preliminary phenotypic map of chromosome 4p16 based on 4p deletions.
        Am J Med Genet. 1995; 57: 581-586
        • Johnson VP
        • Mulder RD
        • Hosen R.
        The Wolf–Hirschhorn(4p-) syndrome.
        Clin Genet. 1976; 10: 104-112
        • Wilson MG
        • Towner JW
        • Coffin GS
        • Ebbin AJ
        • Siris E
        • Brager P.
        Genetic and clinical studies in 13 patients with wolf–hirschhorn syndrome [del (4p)].
        Hum Genet. 1981; 59: 297-307
        • Preus M
        • Ayme S
        • Kaplan P
        • Vekemans M
        • Opitz JM
        • Reynolds JF.
        A taxonomic approach to the del 4p) phenotype.
        Am J Med Genet. 1985; 21: 337-345
        • Battaglia A
        • Carey JC.
        Health supervision and anticipatory guidance of individuals with Wolf–Hirschhorn Syndrome.
        Am J Med Genet Part C Semin Med Genet. 1999; 89C: 111-115
        • Maas NMC
        • Van Buggenhout G
        • Hannes F
        • Thienpont B
        • Sanlaville D
        • Kok K
        • Midro A
        • Andrieux J
        • Anderlid BM
        • Schoumans J
        • Hordik R
        • Devriendt K
        • Fryns JP
        • Vermeesch JR.
        Genotype-phenotype correlation in 21 patients with Wolfhirschhorn syndrome using high resolution array comparative genome hybridisation (CGH).
        J Med Genet. 2008; 45: 71-80
        • Lurie IW
        • Lazjuk GI
        • Ussova YI
        • Presman EB
        • Gurevich DB.
        The Wolf- Hirschhorn syndrome. I. genetics.
        Clin Genet. 1980; 17: 375-384
        • Bergemann AD
        • Cole F
        • Hirschhorn K.
        The etiology of Wolf-Hirschhorn syndrome.
        Trends Genet. 2005; 21: 188-195https://doi.org/10.1016/j.tig.2005.01.008
        • Gavril EC
        • Luca AC
        • Curpan AS
        • et al.
        Wolf-Hirschhorn syndrome: clinical and genetic study of 7 new cases, and mini review.
        Children (Basel). 2021; 8 (Published 2021 Aug 30): 751https://doi.org/10.3390/children8090751
        • Paradowska-Stolarz AM.
        Wolf-Hirschhorn syndrome (WHS) - literature review on the features of the syndrome.
        Adv Clin Exp Med. 2014; 23: 485-489https://doi.org/10.17219/acem/24111
        • Bailey R.
        Wolf-Hirschhorn syndrome: a case study and disease overview.
        Adv Neonatal Care. 2014; 14: 318-321https://doi.org/10.1097/ANC.0000000000000116
        • Battaglia A
        • Carey JC
        • Wright TJ.
        Wolf-Hirschhorn (4p-) syndrome.
        Adv Pediatr. 2001; 48: 75-113
        • Wiel LC
        • Bruno I
        • Barbi E
        • Sirchia F.
        From Wolf-Hirschhorn syndrome to NSD2 haploinsufficiency: a shifting paradigm through the description of a new case and a review of the literature.
        Ital J Pediatr. 2022; 48 (Published 2022 May 12): 72https://doi.org/10.1186/s13052-022-01267-w
        • Battaglia A.
        • Carey J.C.
        • South S.T.
        Wolf-Hirschhorn syndrome: a review and update.
        American Journal of Medical Genetics Part C Seminar in Medical Genetics. 2015; 169: 216-223https://doi.org/10.1002/ajmg.c.31449
        • Nieminen P
        • Kotilainen J
        • Aalto Y
        • Knuutila S
        • Pirinen S
        • Thesleff I.
        MSX1 gene is deleted in Wolf-Hirschhorn syndrome patients with oligodontia.
        J Dent Res. 2003; 82: 1013-1017
        • Nowikovsky K
        • Froschauer EM
        • Zsurka G
        • Samaj J
        • Reipert S
        • Kolisek M
        • Wiesenberger G
        • Schweyen RJ.
        The LETM1/YOL027 gene family encodes a factor of the mitochondrial kþ homeostasis with a potential role in the Wolf–Hirschhorn syndrome.
        J Biol Chem. 2004; 279: 30307-30315
        • Schlickum S
        • Moghekar A
        • Simpson JC
        • Steglich C
        • O'Brien RJ
        • Winterpacht A
        • Endele SU
        LETM1, a gene deleted in wolf– hirschhorn syndrome, encodes an evolutionarily conserved mitochondrial protein.
        Genomics. 2004; 83: 254-261
        • Hasegawa A
        • van der Bliek AM.
        Inverse correlation between expression of the Wolfs Hirschhorn candidate gene Letm1 and mitochondrial volume in C. elegans and in mammalian cells.
        Hum Mol Genet. 2007; 16: 2061-2071
        • Dimmer KS
        • Navoni F
        • Casarin A
        • Trevisson E
        • Endele S
        • Winterpacht A
        • Salviati L
        • Scorrano L.
        LETM1, deleted in Wolf–Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability.
        Hum Mol Genet. 2008; 17: 201-214
        • Jiang D
        • Zhao L
        • Clapham DE.
        Genomewide RNAi screen identifies Letm1 as a mitochondrial Ca2þ/Hþ antiporter.
        Science. 2009; 326: 144-147
        • Kuum M
        • Veksler V
        • Liiv J
        • Ventura-Clapier R
        • Kaasik A.
        Endoplasmic reticulum potassium-hydrogen exchanger and small conductance calcium-activated potassium channel activities are essential for ER calcium uptake in neurons and cardiomyocytes.
        J Cell Sci. 2012; 125: 625-633
        • South ST
        • Whitby H
        • Battaglia A
        • Carey JC
        • Brothman AR.
        Comprehensive analysis of Wolf–Hirschhorn syndrome using array CGH indicates a high prevalence of translocations.
        Eur J Hum Genet. 2008; 16: 45-52
        • Zollino M
        • Murdolo M
        • Marangi G
        • Pecile V
        • Galasso C
        • Mazzanti L
        • Neri G.
        On the nosology and pathogenesis of Wolf–Hirschhorn syndrome: genotype-phenotype correlation analysis of 80 patients and literature review.
        Am J Med Genet Part C 148C. 2008; : 257-269
        • Nevado J
        • Ho KS
        • Zollino M
        • et al.
        International meeting on Wolf-Hirschhorn syndrome: update on the nosology and new insights on the pathogenic mechanisms for seizures and growth delay.
        Am J Med Genet A. 2020; 182: 257-267https://doi.org/10.1002/ajmg.a.61406
        • Zollino M
        • Orteschi D
        • Ruiter M
        • et al.
        Unusual 4p16.3 deletions suggest an additional chromosome region for the Wolf-Hirschhorn syndrome-associated seizures disorder.
        Epilepsia. 2014; 55: 849-857https://doi.org/10.1111/epi.12617
        • Kaminiów K
        • Kozak S
        • Paprocka J.
        Neonatal seizures revisited.
        Children. 2021; 8: 155https://doi.org/10.3390/children8020155
        • Itakura A
        • Saito Y
        • Nishimura Y
        • et al.
        Successful treatment of migrating partial seizures in Wolf-Hirschhorn syndrome with bromide.
        Brain Dev. 2016; 38: 658-662https://doi.org/10.1016/j.braindev.2016.01.001
        • Battaglia A
        • Filippi T
        • Carey JC.
        Update on the clinical features and natural history of Wolf–Hirschhorn (4p-) syndrome: experience with 87 patients and recommendations for routine health supervision.
        Am J Med Genet Part C Semin Med Genet. 2008; 148C: 246-251
        • Battaglia A
        • Guerrini R.
        Chromosomal disorders associated with epilepsy.
        Epileptic Disord. 2005; 7: 181-192
        • Parmeggiani A
        • Posar A
        • Giovannini S
        • Giovanardi-Rossi P.
        Epilepsy in chromosomal abnormalities: an Italian sample.
        J Child Neurol. 2005; 20: 419-423
        • Scheffer IE
        • Berkovic S
        • Capovilla G
        • Connolly MB
        • French J
        • Guilhoto L
        • Hirsch E
        • Jain S
        • Mathern GW
        • Moshé SL
        • Nordli DR
        • Perucca E
        • Tomson T
        • Wiebe S
        • Zhang YH
        • Zuberi SM.
        ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology.
        Epilepsia. 2017; 58 (Apr): 512-521https://doi.org/10.1111/epi.13709
        • Stengel-Rutkowski S
        • Warkotsch A
        • Schimanek P
        • et al.
        Familial wolf's syndrome with a hidden 4p deletion by translocation of an 8p segment: unbalanced inheritance from a maternal translocation (4;8)(p15.3;p22): case report, review and risk estimates.
        Clin Genet. 1984; 25: 500-521
        • Centerwall WR
        • Thompson WP
        • Allen IE
        • et al.
        Translocation 4p syndrome: a general review.
        Am J Dis Child. 1975; 129: 366-370
        • Kanazawa O
        • Irie N
        • Kawai I.
        Epileptic seizures in the 4p- syndrome: report of two cases.
        Jpn J Psychiatry Neurol. 1991; 45: 653-659
        • Fryns JP
        • Francois B
        • Timmermans J
        • et al.
        The Wolf-Hirschhorn syndrome: deletion of the short arm of chromosome 4.
        Acta PaediatrBelg. 1979; 32: 135-139
        • Fryns JP
        • De Muelenaere A
        • Van den Berghe H
        The 4p- syndrome in a 24-year-old female.
        Ann Genet. 1981; 24: 110-111
        • Buckle VJ
        • Fujita N
        • Ryder-Cook AS
        • et al.
        Chromosomal localization of GABAA receptor subunit genes: relationship to human genetic disease.
        Neuron. 1989; 3: 647-654
        • Wright TJ
        • Ricke DO
        • Denison K
        • et al.
        A transcript map of the newly defined 165 kb Wolf-Hirschhorn syndrome critical region.
        Hum Mol Genet. 1997; 6: 317-324
        • Stec I
        • Wright TJ
        • Van Ommen GJB
        • et al.
        WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IGH in t(4;14) multiple myeloma.
        Hum Mol Genet. 1998; 7: 1071-1082
        • Zollino M
        • Lecce R
        • Fischetto R
        • Murdolo M
        • Faravelli F
        • Selicorni A
        • Butte C
        • Memo L
        • Capovilla G
        • Neri G.
        Mapping the wolf–Hirschhorn sı´ndrome phenotype aoutside the currently accepted WHS critical region and defining a new critical region, WHSCR-2.
        Am J Hum Genet. 2003; 72: 590-597
        • Somer M
        • Peippo M
        • Keinanen M.
        Controversial findings in two patients with commercially available probe D4S96 for the Wolf– Hirschhorn syndrome.
        Am J Hum Genet. 1995; 57: A127
        • Rauch A
        • Schellmoser S
        • Kraus C
        • Dorr HG
        • Trautmann U
        • Altherr MR
        • Pfeifer RA
        • Reis A.
        First known microdeletion within the Wolf–Hirschhorn syndrome critical region refines genotype–phenotype correlation.
        Am J Med Genet. 2001; 99: 338-342
        • South ST
        • Bleyl SB
        • Carey JC.
        Two unique patients with novel microdeletions in 4p16.3 that exclude the WHS critical regions: implications for critical region designation.
        Am J Med Genet A. 2007; 143A: 2137-2142
        • Ho KS
        • Markham LM
        • Twede H
        • et al.
        A survey of antiepileptic drug responses identifies drugs with potential efficacy for seizure control in Wolf-Hirschhorn syndrome.
        Epilepsy Behav. 2018; 81: 55-61https://doi.org/10.1016/j.yebeh.2017.12.008
        • Ho KS
        • South ST
        • Lortz A
        • et al.
        Chromosomal microarray testing identifies a 4p terminal region associated with seizures in Wolf-Hirschhorn syndrome.
        J Med Genet. 2016; 53: 256-263https://doi.org/10.1136/jmedgenet-2015-103626
        • Bi W.
        • Cheung S.-W.
        • Breman A.M.
        • Bacino C.A.
        4p16.3 microdeletions and microduplications detected by chromosomal microarray analysis: new insights into mechanisms and critical regions.
        Am J Med Genet Part A. 2016; 170: 2540-2550
        • Battaglia A
        • Carey JC.
        Seizure and EEG patterns in Wolf–Hirschhorn (4p-) syndrome.
        Brain Dev. 2005; 27: 362-364
        • Battaglia A
        • Carey JC
        • Cederholm P
        • Viskochil DH
        • Brothman AR
        • Galasso C.
        Natural history of Wolf-Hirschhorn syndrome: experience with 15 cases.
        Pediatrics. 1999; 103: 830-836
        • Motoi H
        • Okanishi T
        • Kanai S
        • et al.
        Wolf-Hirschhorn (4p-) syndrome with West syndrome.
        Epilepsy Behav Case Rep. 2016; 6 (Published 2016 Jul 15): 39-41https://doi.org/10.1016/j.ebcr.2016.07.001
        • Laan LA
        • Vein AA.
        Angelman syndrome: is there a characteristic EEG?.
        Brain Dev. 2005; 27: 80-87
        • Boyd SG
        • Harden A
        PattonMA. the eeg in early diagnosis of the Angelman (happy puppet) syndrome.
        Eur J Pediatr. 1988; 147: 508-513
        • Guerrini R
        • De Lorey TM
        • Bonanni P
        • et al.
        Cortical myoclonus in Angelman syndrome.
        Ann Neurol. 1996; 40: 39-48
        • Goldenberg M.M.
        Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment.
        PharmTher. 2010; 35: 392-415
        • Delanty N.
        • Cavallleri G.
        Genomics-guided precise anti-epileptic drug development.
        Neurochem Res. 2017; 42: 2084-2088
        • Dhindsa R.S.
        • Goldstein D.B.
        Genetic discoveries drive molecular analyses and targeted therapeutic options in the epilepsies.
        CurrNeurolNeurosci Rep. 2015; 15: 70
        • Battaglia D.
        • Zampino G.
        Zollino electroclinical patterns and evolution of epilepsy in the 4p-syndrome.
        Epilepsia. 2003; 44: 1183-1190
        • Karalok ZS
        • Arhan EP
        • Erdogan KM
        • Gurkas E.
        Excellent response to levetiracetam in epilepsy with Wolf-Hirschhorn syndrome.
        Childs NervSyst. 2016; 32: 9-11
        • Chaudhry C
        • Kaur A
        • Panigrahi I
        • Kaur A.
        Wolf-Hirschhorn syndrome: a case series from India.
        Am J Med Genet A. 2020; 182: 3048-3051https://doi.org/10.1002/ajmg.a.61856
        • Humphrey A
        • Ploubidis G.B.
        • Yates J.R
        • Steinberg T.
        • Bolton P.F.
        The Early Childhood Epilepsy Severity Scale (E-Chess).
        Epilepsy Res. 2008; 79: 139-145
        • Worthington J.C.
        • Rigby A.S.
        • Quarrell O.W.
        Seizure frequency in adults with Wolf–Hirschhorn syndrome.
        Am J Med Genet Part A. 2008; 146A: 2528-2531https://doi.org/10.1002/ajmg.a.32483
        • Thammongkol S
        • Vears DF
        • Bicknell-Royle J
        • et al.
        Efficacy of the ketogenic diet: which epilepsies respond?.
        Epilepsia. 2012; 53: e55-e59https://doi.org/10.1111/j.1528-1167.2011.03394.x
        • Kossoff EH
        • Zupec-Kania BA
        • Amark PE
        • et al.
        Optimal clinical management of children receiving the ketogenic diet: recommendations of the international ketogenic diet study group.
        Epilepsia. 2009; 50: 304-317https://doi.org/10.1111/j.1528-1167.2008.01765.x
        • Freeman JM
        • Vining EP
        • Kossoff EH
        • Pyzik PL
        • Ye X
        • Goodman SN.
        A blinded, crossover study of the efficacy of the ketogenic diet.
        Epilepsia. 2009; 50: 322-325https://doi.org/10.1111/j.1528-1167.2008.01740.x
        • Akman C.I.
        • Montenegro M.A.
        • Jacob S.
        • Eck K.
        • Chiriboga C.
        • Gilliam F.
        Seizure frequency in children with epilepsy: factors influencing accuracy and parental awareness.
        Seizure. 2009; 18: 524-529