Advertisement

Wired for sound: The effect of sound on the epileptic brain

Published:September 23, 2022DOI:https://doi.org/10.1016/j.seizure.2022.09.016

      Highlights

      • Sound and its therapeutic interaction with epilepsy remains an understudied area of research requiring further investigation.
      • Mozart K.448 interventional studies report mean seizure reductions of 21-54% and IEDs reduction of 12-82% but demonstrate significant study heterogeneity.
      • Low-frequency focused ultrasound demonstrates a consistent treatment effect in rodent models but is yet to be adequately reported on within large scale human trials.
      • Understanding the impact of infrasound and epilepsy is critical in an era where sustainable energies are likely to increase exposure.
      • Computational modelling of auditory parameters of music and pure tone frequency studies may assist future development of sound neuro-modulatory treatments.

      Abstract

      Sound waves are all around us resonating at audible and inaudible frequencies. Our ability to hear is crucial in providing information and enabling interaction with our environment. The human brain generates neural oscillations or brainwaves through synchronised electrical impulses. In epilepsy these brainwaves can change and form rhythmic bursts of abnormal activity outwardly appearing as seizures.
      When two waveforms meet, they can superimpose onto one another forming constructive, destructive or mixed interference. The effects of audible soundwaves on epileptic brainwaves has been largely explored with music. The Mozart Sonata for Two Pianos in D major, K. 448 has been examined in a number of studies where significant clinical and methodological heterogeneity exists. These studies report variable reductions in seizures and interictal epileptiform discharges. Treatment effects of Mozart Piano Sonata in C Major, K.545 and other composer interventions have been examined with some musical exposures, for example Hayden's Symphony No. 94 appearing pro-epileptic. The underlying anti-epileptic mechanism of Mozart music is currently unknown, but interesting research is moving away from dopamine reward system theories to computational analysis of specific auditory parameters.
      In the last decade several studies have examined inaudible low intensity focused ultrasound as a neuro-modulatory intervention in focal epilepsy. Whilst acute and chronic epilepsy rodent model studies have consistently demonstrated an anti-epileptic treatment effect this is yet to be reported within large scale human trials. Inaudible infrasound is of concern since at present there are no reported studies on the effects of exposure to infrasound on epilepsy. Understanding the impact of infrasound on epilepsy is critical in an era where sustainable energies are likely to increase exposure.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seizure - European Journal of Epilepsy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fisher R.S.
        • Acevedo C.
        • Arzimanoglou A.
        • Bogacz A.
        • Cross J.H.
        • Elger C.E.
        • et al.
        ILAE official report: a practical clinical definition of epilepsy.
        Epilepsia. 2014; 55: 475-482
        • Fisher R.S.
        • Cross J.H.
        • French J.A.
        • Higurashi N.
        • Hirsch E.
        • Jansen F.E.
        • et al.
        Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology.
        Epilepsia. 2017; 58: 522-530
        • Fiest K.M.
        • Dykeman J.
        • Patten S.B.
        • Wiebe S.
        • Kaplan G.G.
        • Maxwell C.J.
        • et al.
        Depression in epilepsy: a systematic review and meta-analysis.
        Neurology. 2013; 80: 590-599
        • Sveinsson O.
        • Andersson T.
        • Mattsson P.
        • Carlsson S.
        • Tomson T.
        Clinical risk factors in SUDEP: A nationwide population-based case-control study.
        Neurology. 2020; 94: e419-e429
        • Taylor R.S.
        • Sander J.W.
        • Taylor R.J.
        • Baker G.A.
        Predictors of health-related quality of life and costs in adults with epilepsy: a systematic review.
        Epilepsia. 2011; 52: 2168-2180
        • Martins da Silva A.
        • Leal B.
        Photosensitivity and epilepsy: Current concepts and perspectives-a narrative review.
        Seizure. 2017; 50: 209-218
        • Binnie C.D.
        Epilepsy in adults: diagnostic EEG investigation.
        in: Kimura J. Shibasaki H. Recent advances in clinical neurophysiology. Elsevier, Amsterdam1996: 217-222
        • Maguire M.
        Music and its association with epileptic disorders.
        Prog Brain Res. 2015; 217: 107-127
        • Maguire M.
        Epilepsy and music: practical notes.
        Pract Neurol. 2017; 17: 86-95
        • Gelfand S.A.
        Essentials of audiology.
        3rd Ed. Theime, USA2009
        • Hazewinkel M.
        Encyclopaedia of mathematics (set).
        Kluwer, 1994
        • Heffner R.S.
        Primate hearing from a mammalian perspective.
        Anat Rec A Discov Mol Cell Evol Biol. 2004; 281: 1111-1122
        • Hanson M.A.
        Health effects of exposure to ultrasound and infrasound: report of the independent advisory group on non-ionising radiation, Chilton, GB.
        Health Protect Agency. 2010; : 180
        • Watanabe T.
        • Møller H.
        Low frequency hearing thresholds in pressure field and in free field.
        J Low Freq Noise Vibr Act Control. 1990; 9: 106-115
        • Purves D.
        • Augustine G.J.
        • Fitzpatrick D.
        • Katz L.C.
        • Lamantia A.S.
        • McNamara J.
        • et al.
        Neuroscience.
        (editors)2nd edition. Sinauer Associates, Sunderland (MA)2001 (The Audible Spectrum)
      1. Escoffre J, Ayache B. Therapeutic Ultrasound. Ed. Jean-Michel Escoffre and Ayache Bouakaz. Cham: Springer, 2016. Print.

        • Mason T.J.
        Developments in ultrasound–non-medical.
        Prog Biophys Mol Biol. 2007; 93: 166-175
        • Leighton T.G.
        What is ultrasound?.
        Prog Biophys Mol Biol. 2007; 93: 3-83
        • Clerk A.A.
        • Lehnert K.W.
        • Bertet P.
        • Petta J.R.
        • Nakamura Y.
        Hybrid quantum systems with circuit quantum electrodynamics.
        Nat. Phys. 2020; 16: 257-267
        • Yost William A.
        Fundamentals of Hearing: An Introduction.
        Academic Press, San Diego2007 (Print)
        • Stewart L.
        • von Kriegstein K.
        • Warren J.D.
        • Griffiths T.D.
        Music and the brain: disorders of musical listening.
        Brain. 2006; 129: 2533-2553
        • Colrain I.M.
        • Crowley K.E.
        • Nicholas C.L.
        • Afifi L.
        • Baker F.C.
        • Padilla M.
        • et al.
        Sleep evoked delta frequency responses show a linear decline in amplitude across the adult lifespan.
        Neurobiol Aging. 2010; 31: 874-883
        • Aftanas L.I.
        • Golocheikine S.A.
        Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation.
        Neurosci Lett. 2001; 310: 57-60
        • Barker W.
        • Burgwin S.
        Brain wave patterns accompanying changes in sleep and wakefulness during hypnosis.
        Psychosom Med. 1948; 10: 317-326
        • Lega B.C.
        • Jacobs J.
        • Kahana M.
        Human hippocampal theta oscillations and the formation of episodic memories.
        Hippocampus. 2012; 22: 748-761
        • Ekstrom A.D.
        • Caplan J.B.
        • Ho E.
        • Shattuck K.
        • Fried I.
        • Kahana M.J.
        Human hippocampal theta activity during virtual navigation.
        Hippocampus. 2005; 15: 881-889
        • Berger H.
        Über das Elektrenkephalogramm des Menschen.
        Archiv für Psychiatrie und Nervenkrankheiten. 2005; 87: 527-570
        • Jensen O.
        • Mazaheri A.
        Shaping functional architecture by oscillatory alpha activity: gating by inhibition.
        Front Hum Neurosci. 2010; 4: 186
        • Foxe J.J.
        • Snyder A.C.
        The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention.
        Front Psychol. 2011; 5: 154
        • Foster J.J.
        • Sutterer D.W.
        • Serences J.T.
        • Vogel E.K.
        • Awh E.
        Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention.
        Psychol Sci. 2017; 28: 929-941
        • Baker S.N.
        Oscillatory interactions between sensorimotor cortex and the periphery.
        Curr Opin Neurobiol. 2007; 17: 649-655
        • Baumeister J.
        • Barthel T.
        • Geiss K.R.
        • Weiss M.
        Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress.
        Nutr Neurosci. 2008; 11: 103-110
        • Van Kerkoerle T.
        • Self M.W.
        • Dagnino B.
        • Gariel-Mathis M.A.
        • Poort J.
        • van der Togt C.
        • Roelfsema P.R.
        Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortex.
        Proc Natl Acad Sci U S A. 2014; 111: 14332-14341
        • Worrell G.
        • Gotman J.
        High-frequency oscillations and other electrophysiological biomarkers of epilepsy: clinical studies.
        Biomark Med. 2011; 5: 557-566
        • Alvarado-Rojas C.
        • Valderrama M.
        • Fouad-Ahmed A.
        • Feldwisch-Drentrup H.
        • Ihle M.
        • Teixeira C.A.
        • et al.
        Slow modulations of high-frequency activity (40-140-Hz) discriminate preictal changes in human focal epilepsy.
        Sci Rep. 2014; 4: 4545
        • Jacobs J.
        • Wu J.Y.
        • Perucca P.
        • Zelmann R.
        • Mader M.
        • Dubeau F.
        • et al.
        Removing high-frequency oscillations: a prospective multicenter study on seizure outcome.
        Neurology. 2018; 91: e1040-e1052
        • Guirgis M.
        • Chinvarun Y.
        • Del Campo M.
        • Carlen P.L.
        • Bardakjian B.L.
        Defining regions of interest using cross-frequency coupling in extratemporal lobe epilepsy patients.
        J Neural Eng. 2015; 12026011
        • Radi H.
        • Rasmussen J.
        Superposition of sound waves In: Principles of Physics.
        Undergraduate lecture notes in physics. Springer, Berlin, Heidelberg2013: 531-560
        • Oster G.
        Auditory beats in the brain.
        Sci Am. 1973; 229: 94-102
        • Campbell M.
        • Greated C.
        • Myers A.
        Musical instruments: history, technology and performance of instruments of western music.
        1st ed. Oxford University Press, Oxford2004: 26
        • Chaieb L.
        • Wilpert E.C.
        • Reber T.P.
        • Fell J.
        Auditory beat stimulation and its effects on cognition and mood States.
        Front Psychiatry. 2015; 6: 70
        • Kennel S.
        • Taylor A.G.
        • Lyon D.
        • Bourguignon C.
        Pilot feasibility study of binaural auditory beats for reducing symptoms of inattention in children and adolescents with attention-deficit/hyperactivity disorder.
        J Pediatr Nurs. 2010; 25: 3-11
        • Becher A.K.
        • Höhne M.
        • Axmacher N.
        • Chaieb L.
        • Elger C.E.
        • Fell J.
        Intracranial electroencephalography power and phase synchronization changes during monaural and binaural beat stimulation.
        Eur J Neurosci. 2015; 41: 254-263
        • Pellegrino G.
        • Hedrich T.
        • Sziklas V.
        • Lina J.M.
        • Grova C.
        • Kobayashi E.
        How cerebral cortex protects itself from interictal spikes: The alpha/beta inhibition mechanism.
        Hum Brain Mapp. 2021; 42: 3352-3365
        • Bolin K.
        • Bluhm G.
        • Eriksson G.
        • Nilsson M.E.
        Infrasound and low frequency noise from wind turbines: exposure and health effects.
        Environ Res Lett. 2011; 6035103
        • Persinger M.A.
        Infrasound, human health, and adaptation: An integrative overview of recondite hazards in a complex environment.
        Nat Hazard. 2014; 70: 501-525
        • Leventhall G.
        What is infrasound?.
        Prog Biophys Mol Biol. 2007; 93: 130-137
        • Leventhall G.
        • Pelmear P.
        • Benton S.
        A review of published research on low frequency noise and its effects.
        Department for Environment, Food and Rural Affairs, 2003
        • Van Kamp I.
        • van den Berg F.
        Health effects related to wind turbine sound: an update.
        Int J Environ Res Public Health. 2021; 18: 9133
        • Van Kamp I.
        • Simon S.
        • Notley H.
        • Baliatsas C.
        • van Kempen E.
        Evidence relating to environmental noise exposure and annoyance, sleep disturbance, cardio-vascular and metabolic health outcomes in the context of IGCB (N): a scoping review of new evidence.
        Int J Environ Res Public Health. 2020; 17: 3016
        • Baliatsas C.
        • van Kamp I.
        • van Poll R.
        • Yzermans J.
        Health effects from low-frequency noise and infrasound in the general population: Is it time to listen? A systematic review of observational studies.
        Sci Total Environ. 2016; 557-558: 163-169
        • Dommes E.
        • Bauknecht H.C.
        • Scholz G.
        • Rothemund Y.
        • Hensel J.
        • Klingebiel R.
        Auditory cortex stimulation by low-frequency tones-an fMRI study.
        Brain Res. 2009; 1304: 129-137
        • Weichenberger M.
        • Bauer M.
        • Kühler R.
        • Hensel J.
        • Forlim C.G.
        • Ihlenfeld A.
        • Ittermann B.
        • Gallinat J.
        • Koch C.
        • Kühn S.
        Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - evidence from fMRI.
        PLoS One. 2017; 12e0174420
        • Weichenberger M.
        • Kühler R.
        • Bauer M.
        • Hensel J.
        • Brühl R.
        • Ihlenfeld A.
        • et al.
        Brief bursts of infrasound may improve cognitive function–an fMRI study.
        Hear Res. 2015; 328: 87-93
        • Ascone L.
        • Kling C.
        • Wieczorek J.
        • Koch C.
        • Kühn S.
        A longitudinal, randomized experimental pilot study to investigate the effects of airborne infrasound on human mental health, cognition, and brain structure.
        Sci Rep. 2021; 11: 3190
        • Guo-You F.
        • Jing-Zao C.
        • Ke-Yong J.
        Changes of glutamate in brain of rats exposed to infrasound.
        J Fourth Mil Univ. 1999; 20: 288-290
        • Spyraki C.
        • Papadopoulou Z.
        • Zis B.
        • Varonos D.
        Effects of diazepam-infrasounds combination on locomotor activity and avoidance behaviour of rats.
        Pharmacol Biochem Behav. 1980; 12: 767-771
        • Spyraki C.
        • Papadopoulou-Daïfoti Z.
        • Petounis A.
        Norepinephrine levels in rat brain after infrasound exposure.
        Physiol Behav. 1978; 21: 447-448
        • Adaikkan C.
        • Middleton S.J.
        • Marco A.
        • Pao P.C.
        • Mathys H.
        • Kim D.N.
        • et al.
        Gamma Entrainment Binds Higher-Order Brain Regions and Offers Neuroprotection.
        Neuron. 2019; 102 (e8.35): 929-943
        • Iaccarino H.F.
        • Singer A.C.
        • Martorell A.J.
        • Rudenko A.
        • Gao F.
        • Gillingham T.Z.
        • et al.
        Gamma frequency entrainment attenuates amyloid load and modifies microglia.
        Nature. 2016; 540: 230-235
        • Martorell A.J.
        • Paulson A.L.
        • Suk H.J.
        • Abdurrob F.
        • Drummond G.T.
        • Guan W.
        • et al.
        Multi-sensory Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves Cognition.
        Cell. 2019; 177 (e22): 256-271
        • Zheng W.
        • Minama Reddy G.K.
        • Dai F.
        • Chandramani A.
        • Brang D.
        • Hunter S.
        • et al.
        Chasing language through the brain: successive parallel networks.
        Clin Neurophysiol. 2021; 132: 80-93
        • Ribary U.
        • Ioannides A.A.
        • Singh K.D.
        • Hasson R.
        • Bolton J.P.
        • Lado F.
        • et al.
        Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans.
        Proc Natl Acad Sci U S A. 1991; 88: 11037-11041
        • Quon R.J.
        • Leslie G.A.
        • Camp E.J.
        • Meisenhelter S.
        • Steimel S.A.
        • Song Y.
        • et al.
        40-Hz auditory stimulation for intracranial interictal activity: A pilot study.
        Acta Neurol Scand. 2021; 144: 192-201
        • Lin L.C.
        • Lee W.T.
        • Wu H.C.
        • Tsai C.L.
        • Wei R.C.
        • Jong Y.J.
        • et al.
        Mozart K.448 and epileptiform discharges: effect of ratio of lower to higher harmonics.
        Epilepsy Res. 2010; 89: 238-245
        • Buzsáki G.
        • Wang X.J.
        Mechanisms of gamma oscillations.
        Annu Rev Neurosci. 2012; 35: 203-225
        • Vierling-Claassen D.
        • Siekmeier P.
        • Stufflebeam S.
        • Kopell N.
        Modeling GABA alterations in schizophrenia: a link between impaired inhibition and altered gamma and beta range auditory entrainment.
        J Neurophysiol. 2008; 99: 2656-2671
        • Yizhar O.
        • Fenno L.E.
        • Prigge M.
        • Schneider F.
        • Davidson T.J.
        • O'Shea D.J.
        • et al.
        Neocortical excitation/inhibition balance in information processing and social dysfunction.
        Nature. 2011; 477: 171-178
        • Zheng Y.
        • Zhang K.
        • Dong L.
        • Tian C.
        Study on the mechanism of high-frequency stimulation inhibiting low-Mg2+-induced epileptiform discharges in juvenile rat hippocampal slices.
        Brain Res Bull. 2020; 165: 1-13
        • Parvizi J.
        • Gururangan K.
        • Razavi B.
        • Chafe C.
        Detecting silent seizures by their sound.
        Epilepsia. 2018; 59: 877-884
        • Maguire M.J.
        Music and epilepsy: a critical review.
        Epilepsia. 2012; 53 (Jun): 947-961
        • Perani D.
        • Saccuman M.C.
        • Scifo P.
        • Spada D.
        • Andreolli G.
        • Rovelli R.
        • et al.
        Functional specializations for music processing in the human newborn brain.
        Proc Natl Acad Sci U S A. 2010; 107: 4758-4763
        • Tervaniemi M.
        • Medvedev S.V.
        • Alho K.
        • Pakhomov S.V.
        • Roudas M.S.
        • Van Zuijen T.L.
        • et al.
        Lateralized automatic auditory processing of phonetic versus musical information: a PET study.
        Hum Brain Mapp. 2000; 10: 74-79
        • Garcia-Casares N.
        • Garcia-Arnes J.A.
        • Gallego-Bazan Y.
        Conocimiento actual de la epilepsia musicogena: revision de la literatura cientifica [State of the art in musicogenic epilepsy: a review of the scientific literature].
        Rev Neurol. 2019; 69: 293-300
        • Pittau F.
        • Tinuper P.
        • Bisulli F.
        • Naldi I.
        • Cortelli P.
        • Bisulli A.
        • et al.
        Videopolygraphic and functional MRI study of musicogenic epilepsy. A case report and literature review.
        Epilepsy Behav. 2008; 13: 685-692
        • Mehta A.D.
        • Ettinger A.B.
        • Perrine K.
        • Dhawan V.
        • Patil A.
        • Jain S.K.
        • et al.
        Seizure propagation in a patient with musicogenic epilepsy.
        Epilepsy Behav. 2009; 14: 421-424
        • Tayah T.F.
        • Abou-Khalil B.
        • Gilliam F.G.
        • Knowlton R.C.
        • Wushensky C.A.
        • Gallagher M.J.
        Musicogenic seizures can arise from multiple temporal lobe foci: intracranial EEG analyses of three patients.
        Epilepsia. 2006; 47: 1402-1406
        • Trevathan E.
        • Gewirtz R.J.
        • Cibula J.E.
        Musicogenic seizures of the right superior temporal gyrus origin precipitated by the theme song from “The X Files.
        Epilepsia. 1999; 40: 23
        • Shaw D.
        • Hill D.
        A case of musicogenic epilepsy.
        J Neurol Neurosurg Psychiatry. 1947; 10: 107-117
        • Stubbe-Teglbjaerg H.P.
        On musicogenic epilepsy.
        Acta Psychiatr Neurol. 1949; 24: 679-688
        • Dearman H.B.
        • Smith B.M.
        A case of musicogenic epilepsy.
        JAMA. 1965; 193: 1123-1125
        • Gloor P.
        Experiential phenomena of temporal lobe epilepsy. Facts and hypotheses.
        Brain. 1990; 113: 1673-1694
        • Rauscher F.H.
        • Shaw G.L.
        • Ky K.N.
        Music and spatial task performance.
        Nature. 1993; 365: 611
        • Rauscher F.H.
        • Robinson K.D.
        • Jens J.J.
        Improved maze learning through early music exposure in rats.
        Neurol Res. 1998; 20: 427-432
        • Hughes J.R.
        • Daaboul Y.
        • Fino J.J.
        • Shaw G.L.
        The "Mozart effect" on epileptiform activity.
        Clin Electroencephalogr. 1998; 29: 109-119
        • Hughes J.R.
        • Fino J.J.
        • Melyn M.A.
        Is there a chronic change of the “Mozart effect” on epileptiform activity? A case study.
        Clin Electroencephalogr. 1999; 30: 44-45
        • Hughes J.R.
        The Mozart effect.
        Epilepsy Behav. 2001; 2: 396-417
        • Hughes J.R.
        The Mozart effect: additional data.
        Epilepsy Behav. 2002; 3: 182-184
        • Lin L.C.
        • Juan C.T.
        • Chang H.W.
        • Chiang C.T.
        • Wei R.C.
        • Lee M.W.
        • et al.
        Mozart K.448 attenuates spontaneous absence seizure and related high-voltage rhythmic spike discharges in Long Evans rats.
        Epilepsy Res. 2013; 104: 234-240
        • Xing Y.
        • Qin Y.
        • Jing W.
        • Zhang Y.
        • Wang Y.
        • Guo D.
        • et al.
        Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.
        Cogn Neurodyn. 2016; 10: 23-30
        • Lin L.C.
        • Lee M.W.
        • Wei R.C.
        • Mok H.K.
        • Yang R.C.
        Mozart K.448 listening decreased seizure recurrence and epileptiform discharges in children with first unprovoked seizures: a randomized controlled study.
        BMC Complem Altern Med. 2014; 14: 17
        • Rafiee M.
        • Patel K.
        • Groppe D.M.
        • Andrade D.M.
        • Bercovici E.
        • Bui E.
        • et al.
        Daily listening to Mozart reduces seizures in individuals with epilepsy: a randomized control study.
        Epilepsia Open. 2020; 5: 285-294
        • Grylls E.
        • Kinsky M.
        • Baggott A.
        • Wabnitz C.
        • McLellan A.
        Study of the Mozart effect in children with epileptic electroencephalograms.
        Seizure. 2018; 59: 77-81
        • Coppola G.
        • Operto F.F.
        • Caprio F.
        • Ferraioli G.
        • Pisano S.
        • Viggiano A.
        • et al.
        Mozart's music in children with drug-refractory epileptic encephalopathies: Comparison of two protocols.
        Epilepsy Behav. 2018; 78: 100-103
        • Bodner M.
        • Turner R.P.
        • Schwacke J.
        • Bowers C.
        • Norment C.
        Reduction of seizure occurrence from exposure to auditory stimulation in individuals with neurological handicaps: a randomized controlled trial.
        PLoS One. 2012; 7: e45303
        • Sesso G.
        • Sicca F.
        Safe and sound: Meta-analyzing the Mozart effect on epilepsy.
        Clin Neurophysiol. 2020; 131: 1610-1620
        • Dastgheib S.S.
        • Layegh P.
        • Sadeghi R.
        • Foroughipur M.
        • Shoeibi A.
        • Gorji A.
        The effects of Mozart's music on interictal activity in epileptic patients: systematic review and meta-analysis of the literature.
        Curr Neurol Neurosci Rep. 2014; 14: 420
        • Brackney D.E.
        • Brooks J.L.
        Complementary and alternative medicine: the Mozart effect on childhood epilepsy-a systematic review.
        J Sch Nurs. 2018; 34: 28-37
        • Turner R.P.
        The acute effect of music on interictal epileptiform discharges.
        Epilepsy Behav. 2004; 5: 662-668
        • Lin L.C.
        • Lee W.T.
        • Wang C.H.
        • Chen H.L.
        • Wu H.C.
        • Tsai C.L.
        • et al.
        Mozart K.448 acts as a potential add-on therapy in children with refractory epilepsy.
        Epilepsy Behav. 2011; 20: 490-493
        • Lin L.C.
        • Lee W.T.
        • Wu H.C.
        • Tsai C.L.
        • Wei R.C.
        • Mok H.K.
        • et al.
        The long-term effect of listening to Mozart K.448 decreases epileptiform discharges in children with epilepsy.
        Epilepsy Behav. 2011; 21: 420-424
        • Lin L.C.
        • Lee M.W.
        • Wei R.C.
        • Mok H.K.
        • Wu H.C.
        • Tsai C.L.
        • et al.
        Mozart K.545 mimics Mozart K.448 in reducing epileptiform discharges in epileptic children.
        Evid Based Complement Alternat Med. 2012; 2012607517
        • Lin L.C.
        • Chiang C.T.
        • Lee M.W.
        • Mok H.K.
        • Yang Y.H.
        • Wu H.C.
        • et al.
        Parasympathetic activation is involved in reducing epileptiform discharges when listening to Mozart music.
        Clin Neurophysiol. 2013; 124: 1528-1535
        • D'Alessandro P.
        • Giuglietti M.
        • Baglioni A.
        • Verdolini N.
        • Murgia N.
        • Piccirilli M.
        • et al.
        Effects of music on seizure frequency in institutionalized subjects with severe/profound intellectual disability and drug-resistant epilepsy.
        Psychiatr Danub. 2017; 29: 399-404
        • Paprad T.
        • Veeravigrom M.
        • Desudchit T.
        Effect of Mozart K.448 on interictal epileptiform discharges in children with epilepsy: a randomized controlled pilot study.
        Epilepsy Behav. 2021; 114107177
        • Quon R.J.
        • Casey M.A.
        • Camp E.J.
        • Meisenhelter S.
        • Steimel S.A.
        • Song Y.
        • et al.
        Musical components important for the Mozart K448 effect in epilepsy.
        Sci Rep. 2021; 11: 16490
        • Štillová K.
        • Kiska T.
        • Koriťáková E.
        • Strýček O.
        • Mekyska J.
        • Chrastina J.
        • et al.
        Mozart effect in epilepsy: why is Mozart better than Haydn? Acoustic qualities-based analysis of stereoelectroencephalography.
        Eur J Neurol. 2021; 28: 1463-1469
        • Mountcastle V.B.
        The columnar organization of the neocortex.
        Brain. 1997; 120: 701-722
        • Leng X.
        • Shaw G.L.
        • Wright E.L.
        Coding of musical structure and Trion model of cortex.
        Music Percept. 1990; 8: 9-62
        • Rafiee M.
        • Istasy M.
        • Valiante T.A.
        Music in epilepsy: Predicting the effects of the unpredictable.
        Epilepsy Behav. 2021; 122108164
        • Bak P.
        How nature works: the science of self-organized criticality.
        Springer Science & Business Media, 2013
        • Levitin D.J.
        • Chordia P.
        • Menon V.
        Musical rhythm spectra from Bach to Joplin obey a 1/f power law.
        Proc Natl Acad Sci USA. 2012; 109: 3716-3720
        • Miller K.J.
        • Sorensen L.B.
        • Ojemann J.G.
        • den Nijs M.
        • Sporns O.
        Power-law scaling in the brain surface electric potential.
        PLoS Comput Biol. 2009; 5e1000609
        • Yu Y.
        • Romero R.
        • Lee T.S.
        Preference of sensory neural coding for 1/f signals.
        Phys Rev Lett. 2005; 18 (94)108103
        • Pritchard S.
        The brain in fractal time: 1/f-like power spectrum scaling of the human electroencephalogram.
        Int J Neurosci. 1992; 66: 119-129
        • Hsü K.J.
        Fractal geometry of music: From bird songs to Bach.
        Applications of fractals and chaos. Springer, 1993: 21-39
        • Jirsch J.D.
        • Urrestarazu E.
        • LeVan P.
        • Olivier A.
        • Dubeau F.
        • Gotman J.
        High-frequency oscillations during human focal seizures.
        Brain. 2006; 129: 1593-1608
        • Teixeira Borges A.F.
        • Irrmischer M.
        • Brockmeier T.
        • Smit DJA
        • Mansvelder H.D.
        • Linkenkaer-Hansen K.
        Scaling behaviour in music and cortical dynamics interplay to mediate music listening pleasure.
        Sci Rep. 2019; 9: 17700
        • Blood A.J.
        • Zatorre R.J.
        Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion.
        Proc Natl Acad Sci USA. 2001; 98: 11818-11823
        • Koelsch S.
        • Fritz T.
        • Cramon D.
        • Muller K.
        • Friederici A.D
        Investigating emotion with music: an fMRI study.
        Hum Brain Mapp. 2006; 27: 239-250
        • Baik J.H.
        Dopamine signaling in reward-related behaviors.
        Front Neural Circuits. 2013; 7: 152
        • Montag C.
        • Reuter M.
        • Axmacher N.
        How one's favorite song activates the reward circuitry of the brain: personality matters!.
        Behav Brain Res. 2011; 225: 511-514
        • Fedi M.
        • Berkovic S.F.
        • Scheffer I.E.
        • O'Keefe G.
        • Marini C.
        • Mulligan R.
        • et al.
        Reduced striatal D1 receptor binding in autosomal dominant nocturnal frontal lobe epilepsy.
        Neurology. 2008; 71: 795-798
        • Landvogt C.
        • Buchholz H.G.
        • Bernedo V.
        • Schreckenberger M.
        • Werhahn K.J.
        Alteration of dopamine D2/D3 receptor binding in patients with juvenile myoclonic epilepsy.
        Epilepsia. 2010; 51: 1699-1706
        • Werhahn K.J.
        • Landvogt C.
        • Klimpe S.
        • Buchholz H.G.
        • Yakushev I.
        • Siessmeier T.
        • et al.
        Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study.
        Epilepsia. 2006; 47: 1392-1396
        • Deransart C.
        • Riban V.
        • Lê B.
        • Marescaux C.
        • Depaulis A.
        Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat.
        Neuroscience. 2000; 100: 335-344
        • Kaneyuki H.
        • Yokoo H.
        • Tsuda A.
        • Yoshida M.
        • Mizuki Y.
        • Yamada M.
        • et al.
        Psychological stress increases dopamine turnover selectively in mesoprefrontal dopamine neurons of rats: reversal by diazepam.
        Brain Res. 1991; 557: 154-161
        • Lotufo P.A.
        • Valiengo L.
        • Benseñor I.M.
        • Brunoni A.R.
        A systematic review and meta-analysis of heart rate variability in epilepsy and antiepileptic drugs.
        Epilepsia. 2012; 53: 272-282
        • Lin L.C.
        • Chiang C.T.
        • Lee M.W.
        • Mok H.K.
        • Yang Y.H.
        • Wu H.C.
        • et al.
        Parasympathetic activation is involved in reducing epileptiform discharges when listening to Mozart music.
        Clin Neurophysiol. 2013; 124: 1528-1535
        • Min B.K.
        • Bystritsky A.
        • Jung K.I.
        • Fischer K.
        • Zhang Y.
        • Maeng L.S.
        • et al.
        Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity.
        BMC Neurosci. 2011; 12: 23
        • Hakimova H.
        • Kim S.
        • Chu K.
        • Lee S.K.
        • Jeong B.
        • Jeon D.
        Ultrasound stimulation inhibits recurrent seizures and improves behavioral outcome in an experimental model of mesial temporal lobe epilepsy.
        Epilepsy Behav. 2015; 49: 26-32
        • Chen S.G.
        • Tsai C.H.
        • Lin C.J.
        • Lee C.C.
        • Yu H.Y.
        • Hsieh T.H.
        • et al.
        Transcranial focused ultrasound pulsation suppresses pentylenetetrazol induced epilepsy in vivo.
        Brain Stimul. 2020; 13: 35-46
        • Li X.
        • Yang H.
        • Yan J.
        • Wang X.
        • Yuan Y.
        • Li X.
        Seizure control by low-intensity ultrasound in mice with temporal lobe epilepsy.
        Epilepsy Res. 2019; 154: 1-7
        • Zhang M.
        • Li B.
        • Lv X.
        • Liu S.
        • Liu Y.
        • Tang R.
        • et al.
        Low-intensity focused ultrasound-mediated attenuation of acute seizure activity based on EEG brain functional connectivity.
        Brain Sci. 2021; 11: 711
        • Yamaguchi T.
        • Hori T.
        • Hori H.
        • Takasaki M.
        • Abe K.
        • Taira T.
        • et al.
        Magnetic resonance-guided focused ultrasound ablation of hypothalamic hamartoma as a disconnection surgery: a case report.
        Acta Neurochir (Wien). 2020; 162: 2513-2517
        • Abe K.
        • Yamaguchi T.
        • Hori H.
        • Sumi M.
        • Horisawa S.
        • Taira T.
        • et al.
        Magnetic resonance-guided focused ultrasound for mesial temporal lobe epilepsy: a case report.
        BMC Neurol. 2020; 20: 160
        • Brinker S.T.
        • Preiswerk F.
        • White P.J.
        • Mariano T.Y.
        • McDannold N.J.
        • Bubrick E.J.
        Focused ultrasound platform for investigating therapeutic neuromodulation across the human hippocampus.
        Ultrasound Med Biol. 2020; 46: 1270-1274
        • Parker W.E.
        • Weidman E.K.
        • Chazen J.L.
        • Niogi S.N.
        • Uribe-Cardenas R.
        • Kaplitt M.G.
        • et al.
        Magnetic resonance-guided focused ultrasound for ablation of mesial temporal epilepsy circuits: modeling and theoretical feasibility of a novel noninvasive approach.
        J Neurosurg. 2019; 14: 1-8
        • Lee C.C.
        • Chou C.C.
        • Hsiao F.J.
        • Chen Y.H.
        • Lin C.F.
        • Chen C.J.
        • et al.
        Pilot study of focused ultrasound for drug-resistant epilepsy.
        Epilepsia. 2022; 63: 162-175
        • Stern J.M.
        • Spivak N.M.
        • Becerra S.A.
        • Kuhn T.P.
        • Korb A.S.
        • Kronemyer D.
        • et al.
        Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy.
        Brain Stimul. 2021; 14: 1022-1031
        • Prieto M.L.
        • Ömer O.
        • Khuri-Yakub B.T.
        • Maduke M.C.
        Dynamic response of model lipid membranes to ultrasonic radiation force.
        PLoS One. 2013; 8: e77115
        • Tyler W.J.
        • Tufail Y.
        • Finsterwald M.
        • Tauchmann M.L.
        • Olson E.J.
        • Majestic C.
        Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound.
        PLoS One. 2008; 3: e3511
        • Bekar L.
        • Libionka W.
        • Tian G.F.
        • Xu Q.
        • Torres A.
        • Wang X.
        • et al.
        Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor.
        Nat Med. 2008; 14: 75-80
        • Zou J.
        • Yi S.
        • Niu L.
        • Zhou H.
        • Lin Z.
        • Wang Y.
        • et al.
        Neuroprotective effect of ultrasound neuromodulation on kainic acid- induced epilepsy in mice.
        IEEE Trans Ultrason Ferroelectr Freq Control. 2021; 68: 3006-3016
        • Graham F.
        COP26: Glasgow Climate Pact signed into history.
        Nature. 2021;