Advertisement

Dietary effects on antiseizure drug metabolism and management of epilepsy

Published:September 14, 2022DOI:https://doi.org/10.1016/j.seizure.2022.09.009

      Highlights

      • Ketogenic diets (KD) may alter serum concentrations of antiseizure medications (ASM).
      • ASM dosage adjustments may be necessary in patients on KD.
      • Regular monitoring of serum levels of ASM in patients on KD is recommended.
      • Foods and supplements can have inhibitory or enhanced effects on ASM metabolism.

      Abstract

      In recent years, there has been growing interest in the influences of food-drug interactions on the metabolism of antiseizure medications (ASM) and the management of epilepsy. Studies have proven the effectiveness of the ketogenic diet (KD) in controlling refractory epilepsy. However, dietary interventions such as the KD or its variants may induce significant changes in serum drug concentrations which counteracts the anticonvulsive effects of ASMs, leading to an increased risk of developing seizures. Interactions with enzymes within the cytochrome P450 system may also explain the dietary influences on serum concentrations of antiseizure drugs. The bioavailability of ASMs is also affected by several foods and nutritional supplements. Nevertheless, more studies are warranted to explore the mechanisms underlying food-drug interactions and the risks and benefits of combined drug-diet therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seizure - European Journal of Epilepsy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Li T
        • Qin J
        • Chu X-P.
        Editorial: ketogenic diet in epilepsy and associated comorbidities: clinical efficacy and mechanisms.
        Front Neurol. 2020; 11: 66https://doi.org/10.3389/fneur.2020.00066
        • Tian X
        • Chen J
        • Zhang J
        • Yang X
        • Ji T
        • Zhang Y
        • et al.
        The efficacy of ketogenic diet in 60 Chinese patients with Dravet syndrome.
        Front Neurol. 2019; 10: 625https://doi.org/10.3389/fneur.2019.00625
        • D'Andrea Meira I
        • Romão TT
        • Pires do Prado HJ
        • Krüger LT
        • Pires MEP
        • da Conceição PO.
        Ketogenic diet and epilepsy: what we know so far.
        Front Neurosci. 2019; 13: 5https://doi.org/10.3389/fnins.2019.00005
        • Martin-McGill KJ
        • Bresnahan R
        • Levy RG
        • Cooper PN.
        Ketogenic diets for drug-resistant epilepsy.
        Cochrane Database Syst Rev. 2020; 2020CD001903https://doi.org/10.1002/14651858.CD001903.pub5
        • Ułamek-Kozioł M
        • Czuczwar SJ
        • Januszewski S
        • Pluta R.
        Ketogenic diet and epilepsy.
        Nutrients. 2019; 11: 2510https://doi.org/10.3390/nu11102510
        • Neal EG
        • Chaffe H
        • Schwartz RH
        • Lawson MS
        • Edwards N
        • Fitzsimmons G
        • et al.
        The ketogenic diet for the treatment of childhood epilepsy: a randomised controlled trial.
        Lancet Neurol. 2008; 7: 500-506https://doi.org/10.1016/S1474-4422(08)70092-9
        • Rezaei S
        • Abdurahman AA
        • Saghazadeh A
        • Badv RS
        • Mahmoudi M.
        Short-term and long-term efficacy of classical ketogenic diet and modified Atkins diet in children and adolescents with epilepsy: a systematic review and meta-analysis.
        Nutr Neurosci. 2019; 22: 317-334https://doi.org/10.1080/1028415X.2017.1387721
        • Poorshiri B
        • Barzegar M
        • Tahmasebi S
        • Shiva S
        • Raeisi S
        • Ebadi Z.
        The efficacy comparison of classic ketogenic diet and modified Atkins diet in children with refractory epilepsy: a clinical trial.
        Acta Neurol Belg. 2021; 121: 483-487https://doi.org/10.1007/s13760-019-01225-0
        • Williams TJ
        • Cervenka MC.
        The role for ketogenic diets in epilepsy and status epilepticus in adults.
        Clin Neurophysiol Pract. 2017; 2: 154-160https://doi.org/10.1016/j.cnp.2017.06.001
        • McDonald TJW
        • Cervenka MC.
        Ketogenic diets for adults with highly refractory epilepsy.
        Epilepsy Curr. 2017; 17: 346-350https://doi.org/10.5698/1535-7597.17.6.346
        • Zare M
        • Okhovat AA
        • Esmaillzadeh A
        • Mehvari J
        • Najafi MR
        • Saadatnia M.
        Modified Atkins diet in adult with refractory epilepsy: a controlled randomized clinical trial.
        Iran J Neurol. 2017; 16: 72-77
        • Zarnowska I
        • Luszczki JJ
        • Zarnowski T
        • Buszewicz G
        • Madro R
        • Czuczwar SJ
        • et al.
        Pharmacodynamic and pharmacokinetic interactions between common antiepileptic drugs and acetone, the chief anticonvulsant ketone body elevated in the ketogenic diet in mice.
        Epilepsia. 2009; 50: 1132-1140https://doi.org/10.1111/j.1528-1167.2008.01864.x
        • Gasior M
        • French A
        • Joy MT
        • Tang RS
        • Hartman AL
        • Rogawski MA.
        The anticonvulsant activity of acetone, the major ketone body in the ketogenic diet, is not dependent on its metabolites acetol, 1,2-propanediol, methylglyoxal, or pyruvic acid.
        Epilepsia. 2007; 48: 793-800https://doi.org/10.1111/j.1528-1167.2007.01026.x
        • French JA
        • Gidal BE.
        Antiepileptic drug interactions.
        Epilepsia. 2000; 41: S30-S36https://doi.org/10.1111/j.1528-1157.2000.tb02944.x
        • Green SF
        • Nguyen P
        • Kaalund-Hansen K
        • Rajakulendran S
        • Murphy E.
        Effectiveness, retention, and safety of modified ketogenic diet in adults with epilepsy at a tertiary-care centre in the UK.
        J Neurol. 2020; 267: 1171-1178https://doi.org/10.1007/s00415-019-09658-6
        • Liu YC
        • Wang H-S.
        Medium-chain triglyceride ketogenic diet, an effective treatment for drug-resistant epilepsy and a comparison with other ketogenic diets.
        Biomed J. 2013; 36: 9-15https://doi.org/10.4103/2319-4170.107154
        • Misiewicz Runyon A
        • So T-Y.
        The use of ketogenic diet in pediatric patients with epilepsy.
        ISRN Pediatr. 2012; 2012263139https://doi.org/10.5402/2012/263139
        • Barzegar M
        • Afghan M
        • Tarmahi V
        • Behtari M
        • Rahimi Khamaneh S
        • Raeisi S
        Ketogenic diet: overview, types, and possible anti-seizure mechanisms.
        Nutr Neurosci. 2021; 24: 307-316https://doi.org/10.1080/1028415X.2019.1627769
        • Pfeifer HH
        • Lyczkowski DA
        • Thiele EA.
        Low glycemic index treatment: implementation and new insights into efficacy.
        Epilepsia. 2008; 49: 42-45https://doi.org/10.1111/j.1528-1167.2008.01832.x
        • Rezaei S
        • Harsini S
        • Kavoosi M
        • Badv RS
        • Mahmoudi M.
        Efficacy of low glycemic index treatment in epileptic patients: a systematic review.
        Acta Neurol Belg. 2018; 118: 339-349https://doi.org/10.1007/s13760-018-0881-4
        • Sondhi V
        • Agarwala A
        • Pandey RM
        • Chakrabarty B
        • Jauhari P
        • Lodha R
        • et al.
        Efficacy of ketogenic diet, modified atkins diet, and low glycemic index therapy diet among children with drug-resistant epilepsy.
        JAMA Pediatr. 2020; 174: 1-9https://doi.org/10.1001/jamapediatrics.2020.2282
        • Kim DY
        • Simeone KA
        • Simeone TA
        • Pandya JD
        • Wilke JC
        • Ahn Y
        • et al.
        Ketone bodies mediate antiseizure effects through mitochondrial permeability transition.
        Ann Neurol. 2015; 78: 77-87https://doi.org/10.1002/ana.24424
        • Shao L-R
        • Rho JM
        • Stafstrom CE.
        Glycolytic inhibition: a novel approach toward controlling neuronal excitability and seizures.
        Epilepsia Open. 2018; 3: 191-197https://doi.org/10.1002/epi4.12251
        • Juge N
        • Gray JA
        • Omote H
        • Miyaji T
        • Inoue T
        • Hara C
        • et al.
        Metabolic control of vesicular glutamate transport and release.
        Neuron. 2010; 68: 99-112https://doi.org/10.1016/j.neuron.2010.09.002
        • Longo R
        • Peri C
        • Cricrì D
        • Coppi L
        • Caruso D
        • Mitro N
        • et al.
        Ketogenic diet: a new light shining on old but gold biochemistry.
        Nutrients. 2019; 11: 2497https://doi.org/10.3390/nu11102497
        • Simeone TA
        • Simeone KA
        • Stafstrom CE
        • Rho JM.
        Do ketone bodies mediate the anti-seizure effects of the ketogenic diet?.
        Neuropharmacology. 2018; 133: 233-241https://doi.org/10.1016/j.neuropharm.2018.01.011
        • Wang ZJ
        • Bergqvist C
        • Hunter JV
        • Jin D
        • Wang D-J
        • Wehrli S
        • et al.
        In vivo measurement of brain metabolites using two-dimensional double-quantum MR spectroscopy—exploration of GABA levels in a ketogenic diet.
        Magn Reson Med. 2003; 49: 615-619https://doi.org/10.1002/mrm.10429
        • Boison D.
        New insights into the mechanisms of the ketogenic diet.
        Curr Opin Neurol. 2017; 30: 187-192https://doi.org/10.1097/WCO.0000000000000432
        • Freeman T.
        ‘Best practice’ in focus group research: making sense of different views.
        J Adv Nurs. 2006; 56: 491-497https://doi.org/10.1111/j.1365-2648.2006.04043.x
        • Kossoff EH
        • McGrogan JR
        • Bluml RM
        • Pillas DJ
        • Rubenstein JE
        • Vining EP.
        A modified Atkins diet is effective for the treatment of intractable pediatric epilepsy.
        Epilepsia. 2006; 47: 421-424https://doi.org/10.1111/j.1528-1167.2006.00438.x
        • Yang H
        • Guo R
        • Wu J
        • Peng Y
        • Xie D
        • Zheng W
        • et al.
        The antiepileptic effect of the glycolytic inhibitor 2-deoxy-d-glucose is mediated by upregulation of KATP channel subunits Kir6.1 and Kir6.2.
        Neurochem Res. 2013; 38: 677-685https://doi.org/10.1007/s11064-012-0958-z
        • Gasior M
        • Yankura J
        • Hartman AL
        • French A
        • Rogawski MA.
        Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose.
        Epilepsia. 2010; 51: 1385-1394https://doi.org/10.1111/j.1528-1167.2010.02593.x
        • Stringer JL
        • Xu K.
        Possible mechanisms for the anticonvulsant activity of fructose-1,6-diphosphate.
        Epilepsia. 2008; 49: 101-103https://doi.org/10.1111/j.1528-1167.2008.01849.x
        • Abe K
        • Nakanishi K
        • Saito H.
        The possible role of endogenous glutathione as an anticonvulsant in mice.
        Brain Res. 2000; 854: 235-238https://doi.org/10.1016/s0006-8993(99)02269-6
        • McDonald TS
        • Neal ES
        • Borges K.
        Fructose 1,6-bisphosphate is anticonvulsant and improves oxidative glucose metabolism within the hippocampus and liver in the chronic pilocarpine mouse epilepsy model.
        Epilepsy Behav EB. 2021; 122108223https://doi.org/10.1016/j.yebeh.2021.108223
        • Shao L-R
        • Wang G
        • Stafstrom CE.
        The glycolytic metabolite, fructose-1,6-bisphosphate, blocks epileptiform bursts by attenuating voltage-activated calcium currents in hippocampal slices.
        Front Cell Neurosci. 2018; 12: 168https://doi.org/10.3389/fncel.2018.00168
        • Turner TJ
        • Adams ME
        • Dunlap K.
        Calcium channels coupled to glutamate release identified by omega-Aga-IVA.
        Science. 1992; 258: 310-313https://doi.org/10.1126/science.1357749
        • Dunlap K
        • Luebke JI
        • Turner TJ.
        Exocytotic Ca2+ channels in mammalian central neurons.
        Trends Neurosci. 1995; 18: 89-98
        • Rho JM
        • Shao L-R
        • Stafstrom CE.
        2-deoxyglucose and beta-hydroxybutyrate: metabolic agents for seizure control.
        Front Cell Neurosci. 2019; 13: 172https://doi.org/10.3389/fncel.2019.00172
        • Rahman M
        • Muhammad S
        • Khan MA
        • Chen H
        • Ridder DA
        • Müller-Fielitz H
        • et al.
        The β-hydroxybutyrate receptor HCA2 activates a neuroprotective subset of macrophages.
        Nat Commun. 2014; 5: 3944https://doi.org/10.1038/ncomms4944
        • Shimazu T
        • Hirschey MD
        • Newman J
        • He W
        • Shirakawa K
        • Le Moan N
        • et al.
        Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor.
        Science. 2013; 339: 211-214https://doi.org/10.1126/science.1227166
        • Masood W
        • Annamaraju P
        • Uppaluri KR.
        Ketogenic Diet.
        StatPearls Publishing, Treasure Island (FL)2022 (StatPearls)
        • Kang HC
        • Chung DE
        • Kim DW
        • Kim HD.
        Early- and late-onset complications of the ketogenic diet for intractable epilepsy.
        Epilepsia. 2004; 45: 1116-1123https://doi.org/10.1111/j.0013-9580.2004.10004.x
        • Kossoff EH
        • Zupec-Kania BA
        • Auvin S
        • Ballaban-Gil KR
        • Christina Bergqvist AG
        • Blackford R
        • et al.
        Optimal clinical management of children receiving dietary therapies for epilepsy: updated recommendations of the International Ketogenic Diet Study Group.
        Epilepsia Open. 2018; 3: 175-192https://doi.org/10.1002/epi4.12225
        • Katz JB
        • Owusu K
        • Nussbaum I
        • Beekman R
        • DeFilippo NA
        • Gilmore EJ
        • et al.
        Pearls and pitfalls of introducing ketogenic diet in adult status epilepticus: a practical guide for the intensivist.
        J Clin Med. 2021; 10: 881https://doi.org/10.3390/jcm10040881
        • Westman EC
        • Feinman RD
        • Mavropoulos JC
        • Vernon MC
        • Volek JS
        • Wortman JA
        • et al.
        Low-carbohydrate nutrition and metabolism.
        Am J Clin Nutr. 2007; 86: 276-284https://doi.org/10.1093/ajcn/86.2.276
        • Levy RH.
        Cytochrome P450 isozymes and antiepileptic drug interactions.
        Epilepsia. 1995; 36: S8-13https://doi.org/10.1111/j.1528-1157.1995.tb06007.x
        • Johannessen SI
        • Landmark CJ.
        Antiepileptic drug interactions—principles and clinical implications.
        Curr Neuropharmacol. 2010; 8: 254-267https://doi.org/10.2174/157015910792246254
        • Palmer M.
        Combination treatment of epilepsy with ketogenic diet and concurrent pharmacological inhibition of cytochrome P450 2E1.
        Med Hypotheses. 2013; 80: 481-485https://doi.org/10.1016/j.mehy.2013.01.011
        • Yun YP
        • Casazza JP
        • Sohn DH
        • Veech RL
        • Song BJ.
        Pretranslational activation of cytochrome P450IIE during ketosis induced by a high fat diet.
        Mol Pharmacol. 1992; 41: 474-479
        • Boussadia B
        • Ghosh C
        • Plaud C
        • Pascussi J-M
        • deBock F
        • Rousset M-C
        • et al.
        Effect of status epilepticus and antiepileptic drugs on CYP2E1 brain expression.
        Neuroscience. 2014; 281: 124-134https://doi.org/10.1016/j.neuroscience.2014.09.055
        • Heo G
        • Kim SH
        • Chang MJ.
        Effect of ketogenic diet and other dietary therapies on anti-epileptic drug concentrations in patients with epilepsy.
        J Clin Pharm Ther. 2017; 42: 758-764https://doi.org/10.1111/jcpt.12578
        • Coppola G
        • Verrotti A
        • D'Aniello A
        • Arcieri S
        • Operto FF
        • Della Corte R
        • et al.
        Valproic acid and phenobarbital blood levels during the first month of treatment with the ketogenic diet.
        Acta Neurol Scand. 2010; 122: 303-307https://doi.org/10.1111/j.1600-0404.2010.01359.x
        • Dahlin MG
        • Beck OML
        • Amark PE.
        Plasma levels of antiepileptic drugs in children on the ketogenic diet.
        Pediatr Neurol. 2006; 35: 6-10https://doi.org/10.1016/j.pediatrneurol.2005.11.001
        • Goswami JN
        • Sharma S.
        Current perspectives on the role of the ketogenic diet in epilepsy management.
        Neuropsychiatr Dis Treat. 2019; 15: 3273-3285https://doi.org/10.2147/NDT.S201862
        • Kverneland M
        • Taubøll E
        • Molteberg E
        • Veierød MB
        • Selmer KK
        • Nakken KO
        • et al.
        Pharmacokinetic interaction between modified Atkins diet and antiepileptic drugs in adults with drug-resistant epilepsy.
        Epilepsia. 2019; 60: 2235-2244https://doi.org/10.1111/epi.16364
        • Kverneland M
        • Taubøll E
        • Selmer KK
        • Iversen PO
        • Nakken KO.
        Modified Atkins diet may reduce serum concentrations of antiepileptic drugs.
        Acta Neurol Scand. 2015; 131: 187-190https://doi.org/10.1111/ane.12330
        • Johannessen Landmark C
        • Johannessen SI
        • Tomson T.
        Host factors affecting antiepileptic drug delivery-pharmacokinetic variability.
        Adv Drug Deliv Rev. 2012; 64: 896-910https://doi.org/10.1016/j.addr.2011.10.003
        • Ahn JE
        • Bathena SPR
        • Brundage RC
        • Conway JM
        • Leppik IE
        • Birnbaum AK.
        Iron supplements in nursing home patients associated with reduced carbamazepine absorption.
        Epilepsy Res. 2018; 147: 115-118https://doi.org/10.1016/j.eplepsyres.2018.07.015
        • Streetman DS.
        Ketogenic diet affects valproic acid, phenobarbital serum concentrations.
        Pharm Today. 2019; 25: 14https://doi.org/10.1016/j.ptdy.2019.02.005
        • Lyczkowski DA
        • Pfeifer HH
        • Ghosh S
        • Thiele EA.
        Safety and tolerability of the ketogenic diet in pediatric epilepsy: effects of valproate combination therapy.
        Epilepsia. 2005; 46: 1533-1538https://doi.org/10.1111/j.1528-1167.2005.22705.x
        • Zhang L
        • Liu L
        • Chu X
        • Xie H
        • Cao L
        • Guo C
        • et al.
        Combined effects of a high-fat diet and chronic valproic acid treatment on hepatic steatosis and hepatotoxicity in rats.
        Acta Pharmacol Sin. 2014; 35: 363-372https://doi.org/10.1038/aps.2013.135
        • Chang P
        • Terbach N
        • Plant N
        • Chen PE
        • Walker MC
        • Williams RSB.
        Seizure control by ketogenic diet-associated medium chain fatty acids.
        Neuropharmacology. 2013; 69: 105-114https://doi.org/10.1016/j.neuropharm.2012.11.004
        • French JA
        • Krauss GL
        • Biton V
        • Squillacote D
        • Yang H
        • Laurenza A
        • et al.
        Adjunctive perampanel for refractory partial-onset seizures: randomized phase III study 304.
        Neurology. 2012; 79: 589-596https://doi.org/10.1212/WNL.0b013e3182635735
        • Hanada T
        • Hashizume Y
        • Tokuhara N
        • Takenaka O
        • Kohmura N
        • Ogasawara A
        • et al.
        Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy.
        Epilepsia. 2011; 52: 1331-1340https://doi.org/10.1111/j.1528-1167.2011.03109.x
        • Daida A
        • Hamano S
        • Ikemoto S
        • Hirata Y
        • Matsuura R
        • Koichihara R
        • et al.
        Use of perampanel and a ketogenic diet in nonketotic hyperglycinemia: a case report.
        Neuropediatrics. 2020; 51: 417-420https://doi.org/10.1055/s-0040-1708536
        • Patsalos PN.
        The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist.
        Epilepsia. 2015; 56: 12-27https://doi.org/10.1111/epi.12865
        • Zarnowska IM.
        Therapeutic use of the ketogenic diet in refractory epilepsy: what we know and what still needs to be learned.
        Nutrients. 2020; 12: 2616https://doi.org/10.3390/nu12092616
        • Sharma C
        • Dubey R
        • Kumar H
        • Saha N.
        Food reduces the bioavailability of lamotrigine.
        Indian J Med Res. 2005; 121: 659-664
        • Paul E
        • Conant KD
        • Dunne IE
        • Pfeifer HH
        • Lyczkowski DA
        • Linshaw MA
        • et al.
        Urolithiasis on the ketogenic diet with concurrent topiramate or zonisamide therapy.
        Epilepsy Res. 2010; 90: 151-156https://doi.org/10.1016/j.eplepsyres.2010.04.005
        • Takeoka M
        • Riviello Jr., JJ
        • Pfeifer H
        • Thiele EA.
        Concomitant treatment with topiramate and ketogenic diet in pediatric epilepsy.
        Epilepsia. 2002; 43: 1072-1075https://doi.org/10.1046/j.1528-1157.2002.00602.x
        • Takeoka M
        • Holmes GL
        • Thiele E
        • Bourgeois BF
        • Helmers SL
        • Duffy FH
        • et al.
        Topiramate and metabolic acidosis in pediatric epilepsy.
        Epilepsia. 2001; 42: 387-392https://doi.org/10.1046/j.1528-1157.2001.04500.x
        • Perucca E
        • Cloyd J
        • Critchley D
        • Fuseau E.
        Rufinamide: clinical pharmacokinetics and concentration-response relationships in patients with epilepsy.
        Epilepsia. 2008; 49: 1123-1141https://doi.org/10.1111/j.1528-1167.2008.01665.x
        • Karaźniewicz-Łada M
        • Główka AK
        • Mikulska AA
        • Główka FK.
        Pharmacokinetic drug–drug interactions among antiepileptic drugs, including CBD, drugs used to treat COVID-19 and nutrients.
        Int J Mol Sci. 2021; 22: 9582https://doi.org/10.3390/ijms22179582
        • Marahatta A
        • Bhandary B
        • Jeong S-K
        • Kim H-R
        • Chae H-J
        Soybean greatly reduces valproic acid plasma concentrations: a food-drug interaction study.
        Sci Rep. 2014; 4: 4362https://doi.org/10.1038/srep04362
        • Garg SK
        • Kumar N
        • Bhargava VK
        • Prabhakar SK.
        Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy.
        Clin Pharmacol Ther. 1998; 64: 286-288https://doi.org/10.1016/S0009-9236(98)90177-1
        • Mochizuki K
        • Hamano Y
        • Miyama H
        • Arakawa K
        • Kobayashi T
        • Imamura H.
        Successful treatment of a case with concurrent ingestion of carbamazepine overdose and grapefruit juice.
        Acute Med Surg. 2016; 3: 36-38https://doi.org/10.1002/ams2.117
        • Mizukami Y
        • Yamada S
        • Kokudo N
        • Takashima M
        • Yokoyama T.
        Dietary iron reduces the anti-convulsion activity of phenytoin in electroconvulsion via inhibition of brain penetration.
        Brain Res. 2001; 915: 112-117https://doi.org/10.1016/s0006-8993(01)02836-0
        • Kupiec T
        • Raj V.
        Fatal seizures due to potential herb-drug interactions with Ginkgo biloba.
        J Anal Toxicol. 2005; 29: 755-758https://doi.org/10.1093/jat/29.7.755
        • Tyagi A
        • Delanty N.
        Herbal remedies, dietary supplements, and seizures.
        Epilepsia. 2003; 44: 228-235https://doi.org/10.1046/j.1528-1157.2003.19902.x
        • Kumar N
        • Garg SK
        • Prabhakar S.
        Lack of pharmacokinetic interaction between grapefruit juice and phenytoin in healthy male volunteers and epileptic patients.
        Methods Find Exp Clin Pharmacol. 1999; 21: 629-632