Advertisement

A review on role of metformin as a potential drug for epilepsy treatment and modulation of epileptogenesis

Published:September 03, 2022DOI:https://doi.org/10.1016/j.seizure.2022.09.003

      Highlights

      • This review discussed the molecular pathology behind epileptogenesis and the various steps that can be targeted by metformin through evidence gathered from preclinical and clinical studies.
      • In addition to potential role in modulation of epileptogenesis process, the beneficial effect of metformin in reducing cognitive impairment caused by both epilepsy itself and ASMs was discussed.
      • This review suggests the role of repositioning metformin as an adjuvant antiepileptic with possible actions that could modulate epileptogenesis and not just target the symptomatology of the disease.

      Abstract

      Background

      Available anti-seizure medications (ASMs) target the symptomatology of the disease rather than any significant disease/epileptogenesis modifying actions. There are critical concerns of drug resistance and seizure recurrence during epilepsy management. So, drug repurposing is evolving as a paradigm change in the quest for novel epilepsy treatment strategies. Metformin, a well-known anti-diabetic drug has shown multiple pieces of evidence of its potential antiepileptic action.

      Objective

      This review elucidates various mechanisms underlying the beneficial role of metformin in seizure control and modulation of the epileptogenesis process.

      Methods

      Preclinical and clinical evidence involving metformin's role in epilepsy and special conditions like tuberous sclerosis have been reviewed in this paper. The putative mechanisms of epileptogenesis modulation through the use of metformin are also summarised.

      Results

      This review found the efficacy of metformin in different seizure models including genetic knockout model, chemical induced, and kindling models. Only one clinical study of metformin in tuberous sclerosis has shown a reduction in seizure frequency and tumor volume compared to placebo. The suggested mechanisms of metformin relevant to epileptogenesis modulation mainly encompass AMPK activation, mTOR inhibition, protection against blood-brain-barrier disruption, inhibition of neuronal apoptosis, and reduction of oxidative stress. In addition to seizure protection, metformin has a potential role in attenuating adverse effects associated with epilepsy and ASMs such as cognition and memory impairment.

      Conclusion

      Metformin has shown promising utility in epilepsy management and epileptogenesis modulation. The evidence in this review substantiates the need for a robust clinical trial to explore the efficacy and safety of metformin in persons with epilepsy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seizure - European Journal of Epilepsy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fisher R.S.
        • Acevedo C.
        • Arzimanoglou A.
        • Bogacz A.
        • Cross J.H.
        • Elger C.E.
        • Engel J.
        • Forsgren L.
        • French J.A.
        • Glynn M.
        • Hesdorffer D.C.
        ILAE official report: a practical clinical definition of epilepsy.
        Epilepsia. 2014; 55 (Apr): 475-482
        • Lipton R.B.
        • Schwedt T.J.
        • Friedman B.W.
        GBD 2015 disease and Injury incidence and prevalence collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the global burden of disease study 2015.
        Lancet. 2017; 388 (Jan 5PMID: 27733282.[PubMed: 27733282][Cross Ref]): 1545-1602
        • Ngugi A.K.
        • Bottomley C.
        • Kleinschmidt I.
        • Sander J.W.
        • Newton C.R.
        Estimation of the burden of active and life-time epilepsy: a meta-analytic approach.
        Epilepsia. 2010; 51 (May): 883-890
        • Sarangi S.C.
        • Kaur N.
        • Tripathi M.
        Assessment of psychiatric and behavioral adverse effects of antiepileptic drugs monotherapy: could they have a neuroendocrine correlation in persons with epilepsy?.
        Epilepsy Behav. 2019; 100 (Nov 1)106439
        • Kumar S.
        • Sarangi S.C.
        • Tripathi M.
        • Gupta Y.K.
        Evaluation of adverse drug reaction profile of antiepileptic drugs in persons with epilepsy: a cross-sectional study.
        Epilepsy Behav. 2020; 105 (Apr 1)106947
        • Kwan P.
        • Schachter S.C.
        • Brodie M.J.
        Drug-resistant epilepsy.
        N. Engl. J. Med. 2011; 365 (Sep 8): 919-926
        • Du C.
        • Zheng F.
        • Wang X.
        Exploring novel AEDs from drugs used for treatment of non-epileptic disorders.
        Expert. Rev. Neurother. 2016; 16 (Apr 2): 449-461
        • Jamali-raoufi N.
        • Barati H.
        • Fahanik-Babaei J.
        • Baluchnejadmojarad T.
        Dipeptidyl peptidase-4 inhibitor ameliorates status epilepticus seizures and cognitive disturbances in a rat model of temporal lobe epilepsy.
        J. Basic Clin. Pathophysiol. 2018; 6 (Feb 1): 31-36
        • Mehrabi S.
        • Sanadgol N.
        • Barati M.
        • Shahbazi A.
        • Vahabzadeh G.
        • Barzroudi M.
        • Seifi M.
        • Gholipourmalekabadi M.
        • Golab F.
        Evaluation of metformin effects in the chronic phase of spontaneous seizures in pilocarpine model of temporal lobe epilepsy.
        Metab. Brain Dis. 2018; 33 (Feb): 107-114
        • Hussein A.M.
        • Eldosoky M.
        • El-Shafey M.
        • El-Mesery M.
        • Ali A.N.
        • Abbas K.M.
        • Abulseoud O.A.
        Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy.
        Can. J. Physiol. Pharmacol. 2019; 97: 37-46
        • Zhao R.R.
        • Xu X.C.
        • Xu F.
        • Zhang W.L.
        • Zhang W.L.
        • Liu L.M.
        • Wang W.P.
        Metformin protects against seizures, learning and memory impairments and oxidative damage induced by pentylenetetrazole-induced kindling in mice.
        Biochem. Biophys. Res. Commun. 2014; 448 (Jun 13): 414-417
        • Yang Y.
        • Zhu B.
        • Zheng F.
        • Li Y.
        • Zhang Y.
        • Hu Y.
        • Wang X.
        Chronic metformin treatment facilitates seizure termination.
        Biochem. Biophys. Res. Commun. 2017; 484 (Mar 4): 450-455
        • Osornio M.D.
        • Ramírez V.C.
        • Gámez D.C.
        • Tres C.P.
        • Aguilera K.G.
        • Farfán B.V.
        Metformin plus caloric restriction show antiepileptic effects mediated by mTOR pathway inhibition.
        Cell. Mol. Neurobiol. 2018; 38 (Oct): 1425-1438
        • Bisulli F.
        • Muccioli L.
        • d'Orsi G.
        • Canafoglia L.
        • Freri E.
        • Licchetta L.
        • Mostacci B.
        • Riguzzi P.
        • Pondrelli F.
        • Avolio C.
        • Martino T.
        Treatment with metformin in twelve patients with Lafora disease.
        Orphanet. J. Rare. Dis. 2019; 14 (Dec): 1-5
        • Sánchez-Elexpuru G.
        • Serratosa J.M.
        • Sanz P.
        • Sánchez MP.
        4-PBA and metformin decrease sensitivity to PTZ-induced seizures in a malin knockout model of Lafora disease.
        Neuroreport. 2017; 28 (Mar 22): 268
        • Nesci V.
        • Russo E.
        • Arcidiacono B.
        • Citraro R.
        • Tallarico M.
        • Constanti A.
        • Brunetti A.
        • De Sarro G.
        • Leo A.
        Metabolic alterations predispose to seizure development in high-fat diet-treated mice: the role of metformin.
        Mol. Neurobiol. 2020; 57 (Nov): 4778-4789
        • Vazifehkhah S.
        • Ali M.K.
        • Babae J.F.
        • Hashemi P.
        • Alireza M.S.
        • Nikbakht F.
        Evaluation of the ameliorative effects of oral administration of metformin on epileptogenesis in the temporal lobe epilepsy model in rats.
        Life Sci. 2020; 257 (Sep 15)118066
        • Bibi F.
        • Ullah I.
        • Kim M.O.
        • Naseer M.I.
        Metformin attenuate PTZ-induced apoptotic neurodegeneration in human cortical neuronal cells.
        Pak. J. Med. Sci. 2017; 33 (May): 581
        • Vazifehkhah S.
        • Khanizadeh A.M.
        • Mojarad T.B.
        • Nikbakht F.
        The possible role of progranulin on anti-inflammatory effects of metformin in temporal lobe epilepsy.
        J. Chem. Neuroanat. 2020; 109 (Nov 1)101849
        • Mohamed M.A.
        • Abdel-Rahman R.F.
        • Mahmoud S.S.
        • Khattab M.M.
        • Safar M.M.
        Metformin and trimetazidine ameliorate diabetes-induced cognitive impediment in status epileptic rats.
        Epilepsy Behav. 2020; 104 (Mar 1)106893
        • Kumar P.
        • Kale R.K.
        • Baquer N.Z.
        Effect of metformin on seizures in FeCl3 induced epileptic animal models.
        J. Neurol. Sci. 2013; 333 (Oct 15): e44
        • Chen J.
        • Zheng G.
        • Guo H.
        • Shi Z.N.
        • Jiang J.
        • Wang X.Y.
        • Yang X.
        • Liu X.Y.
        The effect of metformin treatment on endoplasmic reticulum (ER) stress induced by status epilepticus (SE) via the PERK-eIF2α-CHOP pathway.
        Bosn. J. Basic Med. Sci. 2018; 18 (Feb): 49
        • Zeyghami M.A.
        • Hesam E.
        • Khadivar P.
        • Hesam H.K.
        • Ahmadnia A.
        • Amini A.
        Effects of atorvastatin and metformin on development of pentylenetetrazole-induced seizure in mice.
        Heliyon. 2020; 6 (Apr 1): e03761
        • Bojja S.L.
        • Medhi B.
        • Anand S.
        • Bhatia A.
        • Joshi R.
        • Minz R.W.
        Metformin ameliorates the status epilepticus-induced hippocampal pathology through possible mtor modulation.
        Inflammopharmacology. 2021; 29 (Feb): 137-151
        • Amin S.
        • Mallick A.A.
        • Edwards H.
        • Cortina-Borja M.
        • Laugharne M.
        • Likeman M.
        • O'Callaghan F.J.
        The metformin in tuberous sclerosis (MiTS) study: a randomised double-blind placebo-controlled trial.
        EClinicalMedicine. 2021; 32 (Feb 1)100715
        • Dudek F.E.
        • Staley K.J.
        The time course of acquired epilepsy: implications for therapeutic intervention to suppress epileptogenesis.
        Neurosci. Lett. 2011; 497 (Jun 27): 240-246
        • Pitkänen A.
        • Lukasiuk K.
        • Dudek F.E.
        • Staley K.J.
        Epileptogenesis.
        Cold Spring Harb. Perspect. Med. 2015; 5a022822
        • Buckmaster P.S.
        • Lew F.H.
        Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy.
        J. Neurosci. 2011; 31 (Feb 9): 2337-2347
        • Heck N.
        • Garwood J.
        • Loeffler J.P.
        • Larmet Y.
        • Faissner A.
        Differential upregulation of extracellular matrix molecules associated with the appearance of granule cell dispersion and mossy fiber sprouting during epileptogenesis in a murine model of temporal lobe epilepsy.
        Neuroscience. 2004; 129 (Jan 1): 309-324
        • Hester M.S.
        • Danzer S.C.
        Hippocampal granule cell pathology in epilepsy—a possible structural basis for comorbidities of epilepsy?.
        Epilepsy Behav. 2014; 38 (Sep 1): 105-116
        • Zeng L.H.
        • Rensing N.R.
        • Wong M.
        The mammalian target of rapamycin signaling pathway mediates epileptogenesis in a model of temporal lobe epilepsy.
        J. Neurosci. 2009; 29 (May 27): 6964-6972
        • Varvel N.H.
        • Jiang J.
        • Dingledine R.
        Candidate drug targets for prevention or modification of epilepsy.
        Annu. Rev. Pharmacol. Toxicol. 2015; 55 (Jan 6): 229-247
      1. McNamara J.O., Scharfman H.E. Temporal Lobe Epilepsy and the BDNF Receptor, TrkB. In: Noebels J.L., Avoli M., Rogawski M.A., et al., editors. Jasper's Basic Mechanisms of the Epilepsies [Internet]. 4th edition. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available from: https://www.ncbi.nlm.nih.gov/books/NBK98186/.

        • Scharfman H.E.
        • Brooks-Kayal A.R.
        Is plasticity of GABAergic mechanisms relevant to epileptogenesis?.
        Issues in Clinical Epileptology: A View from the Bench. Adv Exp Med Biol, 2014: 133-150
        • Ostendorf A.P.
        • Wong M.
        mTOR inhibition in epilepsy: rationale and clinical perspectives.
        CNS Drugs. 2015; 29 (Feb 1): 91-99
        • Guo D.
        • Zeng L.
        • Brody D.L.
        • Wong M.
        Rapamycin attenuates the development of posttraumatic epilepsy in a mouse model of traumatic brain injury.
        PLoS One. 2013; 8 (May 14): e64078
        • Way S.W.
        • Rozas N.S.
        • Wu H.C.
        • McKenna I.I.I.J.
        • Reith R.M.
        • Hashmi S.S.
        • Dash P.K.
        • Gambello M.J.
        The differential effects of prenatal and/or postnatal rapamycin on neurodevelopmental defects and cognition in a neuroglial mouse model of tuberous sclerosis complex.
        Hum. Mol. Genet. 2012; 21 (Jul 15): 3226-3236
        • French J.A.
        • Lawson J.A.
        • Yapici Z.
        • Ikeda H.
        • Polster T.
        • Nabbout R.
        • Curatolo P.
        • de Vries P.J.
        • Dlugos D.J.
        • Berkowitz N.
        • Voi M.
        Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study.
        Lancet North Am. Ed. 2016; 388 (Oct 29): 2153-2163
        • Foretz M.
        • Guigas B.
        • Bertrand L.
        • Pollak M.
        • Viollet B.
        Metformin: from mechanisms of action to therapies.
        Cell Metab. 2014; 20 (Dec 2): 953-966
        • Viollet B.
        • Guigas B.
        • Garcia N.S.
        • Leclerc J.
        • Foretz M.
        • Andreelli F.
        Cellular and molecular mechanisms of metformin: an overview.
        Clin. Sci. (Colch). 2012; 122 (Mar 1): 253-270
        • Diamanti-Kandarakis E.
        • Paterakis T.
        • Alexandraki K.
        • Piperi C.
        • AessoposA K.I.
        • Katsilambros N.
        • Kreatsas G.
        • Panidis D.
        Indices of low-gradechronic inflammation in polycystic ovary syndrome and the beneficialeffect of metformin.
        Hum. Reprod. 2006; 21: 1426-1431
        • Hattori Y.
        • Suzuki K.
        • Hattori S.
        • Kasai K.
        Metformin inhibits cytokine-induced nuclear factor kappaB activation via AMP-activated protein kinase activation in vascular endothelial cells.
        Hypertension. 2006; 47: 1183-1188
        • O'Neill L.A.
        • Hardie D.G.
        Metabolism of inflammation limited by AMPK andpseudo-starvation.
        Nature. 2013; 493: 346-355
        • Hardie D.G.
        • Rosso F.A.
        • Hawley SA.
        AMPK: a nutrient and energy sensor that maintains energy homeostasis.
        Nat. Rev. Mol. Cell Biol. 2012; 13: 251-262
        • Nitschke F.
        • Ahonen S.J.
        • Nitschke S.
        • Mitra S.
        • Minassian B.A.
        Lafora disease – from pathogenesis to treatment strategies.
        Nat. Rev. Neurol. 2018; 14: 606-617
        • Yimer E.M.
        • Surur A.
        • Wondafrash D.Z.
        • Gebre A.K.
        The effect of metformin in experimentally induced animal models of epileptic seizure.
        Behav. Neurol. 2019; 2019 (Feb 4)
        • Geronzi U.
        • Lotti F.
        • Grosso S.
        Oxidative stress in epilepsy.
        Expert. Rev. Neurother. 2018; 18 (May 4): 427-434
      2. Méndez-Armenta, M., Nava-Ruíz, C., Juárez-Rebollar, D., Rodríguez-Martínez, E., & Gómez, P. Y. (2014). Oxidative stress associated with neuronal apoptosis in experimental models of epilepsy. Oxid Med Cell Longev. 2014; 2014, 293689.

        • Ahmadian S.R.
        • Ghasemi-Kasman M.
        • Pouramir M.
        • Sadeghi F.
        Arbutin attenuates cognitive impairment and inflammatory response in pentylenetetrazol-induced kindling model of epilepsy.
        Neuropharmacology. 2019; 146 (Mar 1): 117-127
        • Davis B.J.
        • Xie Z.
        • Viollet B.
        • Zou M.H.
        Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase.
        Diabetes. 2006; 55 (Feb 1): 496-505
        • Naseer M.I.
        • Ullah I.
        • Ullah N.
        • Lee H.Y.
        • Cheon E.W.
        • Chung J.
        • MO K.
        Neuroprotective effect of vitamin C against PTZ induced apoptotic neurodegeneration in adult rat brain.
        Pak J Pharm Sci. 2011; 24 (Jul 1)
        • Chen D.
        • Xia D.
        • Pan Z.
        • Xu D.
        • Zhou Y.
        • Wu Y.
        • Cai N.
        • Tang Q.
        • Wang C.
        • Yan M.
        • Zhang J.J.
        Metformin protects against apoptosis and senescence in nucleus pulposus cells and ameliorates disc degeneration in vivo.
        Cell Death. Dis. 2016; 7 (Oct): e2441
        • Singh N.
        • Vijayanti S.
        • Saha L.
        Targeting crosstalk between Nuclear factor (erythroid-derived 2)-like 2 and Nuclear factor kappa beta pathway by Nrf2 activator dimethyl fumarate in epileptogenesis.
        Int. J. Neurosci. 2018; 128 (Oct 3): 987-994
        • Rempe R.G.
        • Hartz A.M.
        • Soldner E.L.
        • Sokola B.S.
        • Alluri S.R.
        • Abner E.L.
        • Kryscio R.J.
        • Pekcec A.
        • Schlichtiger J.
        • Bauer B.
        Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy.
        J. Neurosci. 2018; 38 (May 2): 4301-4315
        • Shaw R.J.
        LKB1 and AMP-activated protein kinase control of mTOR signalling and growth.
        Actaphysiologica. 2009; 196 (May): 65-80
        • Berthier A.
        • Payá M.
        • García-Cabrero A.M.
        • Ballester M.I.
        • Heredia M.
        • Serratosa J.M.
        • Sánchez M.P.
        • Sanz P.
        Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease.
        Mol. Neurobiol. 2016; 53 (Mar 1): 1296-1309
        • Citraro R.
        • Leo A.
        • Constanti A.
        • Russo E.
        • De Sarro G.
        mTOR pathway inhibition as a new therapeutic strategy in epilepsy and epileptogenesis.
        Pharmacol. Res. 2016; 107 (May 1): 333-343
        • Rong H.
        • Jin L.
        • Wei W.
        • Wang X.
        • Xi Z.
        Alpha-synuclein is a potential biomarker in the serum and CSF of patients with intractable epilepsy.
        Seizure. 2015; 27 (Apr 1): 6-9
        • Eller M.
        • Williams D.R.
        α-Synuclein in Parkinson disease and other neurodegenerative disorders.
        Clin. Chem. Lab. Med. 2011; 49 (Mar 1): 403-408
        • Liu J.
        • Zhu H.X.
        • Fu W.L.
        • Xu X.W.
        • Yang J.Z.
        • Dai D.
        • Li Y.
        Downregulated hippocampal expression of brain derived neurotrophic factor and tyrosine kinase B in a rat model of comorbid epilepsy and depression.
        Neurol. Res. 2019; 41 (May 4): 437-445
        • Rüber T.
        • David B.
        • Lüchters G.
        • Nass R.D.
        • Friedman A.
        • Surges R.
        • Stöcker T.
        • Weber B.
        • Deichmann R.
        • Schlaug G.
        • Hattingen E.
        Evidence for peri-ictal blood–brain barrier dysfunction in patients with epilepsy.
        Brain. 2018; 141 (Oct 1): 2952-2965
        • Anderson V.C.
        • Lenar D.P.
        • Quinn J.F.
        • Rooney W.D.
        The blood-brain barrier and microvascular water exchange in Alzheimer's disease.
        Cardiovasc. Psychiatry Neurol. 2011; 2011
        • Tomkins O.
        • Feintuch A.
        • Benifla M.
        • Cohen A.
        • Friedman A.
        • Shelef I.
        Blood-brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy.
        Cardiovasc. Psychiatry Neurol. 2011; 2011
        • Serlin Y.
        • Levy J.
        • Shalev H.
        Vascular pathology and blood-brain barrier disruption in cognitive and psychiatric complications of type 2 diabetes mellitus.
        Cardiovasc. Psychiatry Neurol. 2011; 2011
        • Liu Y.
        • Tang G.
        • Li Y.
        • Wang Y.
        • Chen X.
        • Gu X.
        • Zhang Z.
        • Wang Y.
        • Yang GY.
        Metformin attenuates blood-brain barrier disruption in mice following middle cerebral artery occlusion.
        J. Neuroinflammation. 2014; 11 (Dec): 1-2
        • O'Callaghan F.J.
        • Shiell A.W.
        • Osborne J.P.
        • Martyn C.N.
        Prevalence of tuberous sclerosis estimated by capture-recapture analysis.
        Lancet North Am. Ed. 1998; 351 (May 16): 1490
        • Gavrilovic A.
        • Toncev G.
        • Matic T.B.
        • Vesic K.
        • Zivojinovic J.I.
        • Gavrilovic J.
        Impact of epilepsy duration, seizure control and EEG abnormalities on cognitive impairment in drug-resistant epilepsy patients.
        Acta Neurol. Belg. 2019; 119: 403-410
        • Leeman-Markowski B.A.
        • Schachter SC.
        Treatment of cognitive deficits in epilepsy.
        Neurol. Clin. 2016; 34 (Feb 1): 183-204
        • Powell G.
        • Ziso B.
        • Larner A.J.
        The overlap between epilepsy and Alzheimer's disease and the consequences for treatment.
        Expert. Rev. Neurother. 2019; 19 (Jul 3): 653-661
        • Friedman D.
        • Honig L.S.
        • Scarmeas N.
        Seizures and epilepsy in Alzheimer's disease.
        CNS Neurosci. Ther. 2012; 18 (Apr): 285-294
        • Chin J.
        • Scharfman H.E.
        Shared cognitive and behavioral impairments in epilepsy and Alzheimer's disease and potential underlying mechanisms.
        Epilepsy Behav. 2013; 26 (Mar 1): 343-351
        • Alzoubi H.
        • Khabour F.
        • I Al-azzam S.
        • Tashtoush M.H.
        • Mhaidat N.M.
        Metformin eased cognitive impairment induced by chronic L-methionine administration: potential role of oxidative stress.
        Curr. Neuropharmacol. 2014; 12 (Mar 1): 186-192
        • El-Mir M.Y.
        • Detaille D.
        • Delgado-Esteban M.
        • Guigas B.
        • Attia S.
        • Fontaine E.
        • Almeida A.
        • Leverve X.
        Neuroprotective role of antidiabetic drug metformin against apoptotic cell death in primary cortical neurons.
        J. Mol. Neurosci. 2008; 34 (Jan): 77-87
        • Pintana H.
        • Apaijai N.
        • Pratchayasakul W.
        • Chattipakorn N.
        • Chattipakorn S.C.
        Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.
        Life Sci. 2012; 91 (Oct 5): 409-414
        • Poels J.
        • Spasić M.R.
        • Callaerts P.
        • Norga K.K.
        Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy.
        Bioessays. 2009; 31 (Sep): 944-952
        • Wang C.
        • Liu C.
        • Gao K.
        • Zhao H.
        • Zhou Z.
        • Shen Z.
        • Guo Y.
        • Li Z.
        • Yao T.
        • Mei X.
        Metformin preconditioning provide neuroprotection through enhancement of autophagy and suppression of inflammation and apoptosis after spinal cord injury.
        Biochem. Biophys. Res. Commun. 2016; 477 (Sep 2): 534-540
        • Wang J.
        • Gallagher D.
        • DeVito L.M.
        • Cancino G.I.
        • Tsui D.
        • He L.
        • Keller G.M.
        • Frankland P.W.
        • Kaplan D.R.
        • Miller F.D.
        Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation.
        Cell Stem Cell. 2012; 11 (Jul 6): 23-35
        • Aksoz E.
        • Gocmez S.S.
        • Sahin T.D.
        • Aksit D.
        • Aksit H.
        • Utkan T.
        The protective effect of metformin in scopolamine-induced learning and memory impairment in rats.
        Pharmacol Rep. 2019; 71 (Oct 1): 818-825
        • Ou Z.
        • Kong X.
        • Sun X.
        • He X.
        • Zhang L.
        • Gong Z.
        • Huang J.
        • Xu B.
        • Long D.
        • Li J.
        • Li Q.
        Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice.
        Brain Behav. Immun. 2018; 69 (Mar 1): 351-363
        • Farr S.A.
        • Roesler E.
        • Niehoff M.L.
        • Roby D.A.
        • McKee A.
        • Morley JE.
        Metformin improves learning and memory in the SAMP8 mouse model of Alzheimer's disease.
        J. Alzheimers Dis. 2019; 68 (Jan 1): 1699-1710