Advertisement

Molecular mechanisms of topiramate and its clinical value in epilepsy

      Highlights

      • This review updates the mechanisms, clinical benefits and adverse reactions of TPM.
      • TPM has exhibited neuroprotective effects in several preclinical studies.
      • Efficacy of TPM in comorbidities with epilepsy (migraine & obesity) were discussed.

      Abstract

      Topiramate (TPM) is widely used as monotherapy or add-on therapy in adults and children (aged 2 to 16 years) with primary generalized tonic-clonic seizures or focal-onset seizures. TPM has also expanded its treatment spectrum to other seizure types and epileptic encephalopathies. Moreover, TPM has beneficial effects in some comorbidities of epilepsy such as migraine/headache and obesity. Interestingly, it also exhibited neuroprotective effects in several preclinical studies. The most common side effects of TPM are generally mild to moderate, including somnolence, dizziness, fatigue, insomnia and weight loss, which may be reduced through starting with a low dose and slowing titration to effective dosages. The mechanisms underlying the antiepileptic effect and adverse reactions of TPM have been extensively studied in the past 14 years since the last comprehensive review of TPM. Multiple mechanisms including but not limited to: (1) blockade of voltage-gated Na+ channels, (2) inhibition of voltage-gated Ca2+ channels, (3) inhibition of glutamate-mediated neurotransmission, (4) inhibition of carbonic anhydrase isoenzyme, as well as (5) enhancement of GABA-mediated neurotransmission are involved in its antiepileptic effect. In this review, we aim to summarize the mechanisms, clinical benefits and adverse reactions of TPM in epilepsy treatment, and to briefly discuss the prospects of TPM.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Seizure - European Journal of Epilepsy
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      Reference

        • Thijs R.D.
        • Surges R.
        • O'Brien T.J.
        • Sander J.W.
        Epilepsy in adults.
        Lancet. 2019; 393: 689-701https://doi.org/10.1016/S0140-6736(18)32596-0
        • Johnson E.L.
        Seizures and epilepsy.
        Med Clin North Am. 2019; 103: 309-324https://doi.org/10.1016/j.mcna.2018.10.002
        • Bastos F.
        • Cross JH Epilepsy
        Handb Clin Neurol. 2020; 174: 137-158https://doi.org/10.1016/B978-0-444-64148-9.00011-9
        • Staley K.
        Molecular mechanisms of epilepsy.
        Nat Neurosci. 2015; 18: 367-372https://doi.org/10.1038/nn.3947
        • Shao L.R.
        • Habela C.W.
        • Stafstrom C.E.
        Pediatric epilepsy mechanisms: expanding the paradigm of excitation/inhibition imbalance.
        Children (Basel). 2019; 6https://doi.org/10.3390/children6020023
        • Oyrer J.
        • Maljevic S.
        • Scheffer I.E.
        • Berkovic S.F.
        • Petrou S.
        • Reid C.A.
        Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies.
        Pharmacol Rev. 2018; 70: 142-173https://doi.org/10.1124/pr.117.014456
        • Wei F.
        • Yan L.M.
        • Su T.
        • He N.
        • Lin Z.J.
        • Wang J.
        • et al.
        Ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy.
        Neurosci Bull. 2017; 33: 455-477https://doi.org/10.1007/s12264-017-0134-1
        • Kim K.T.
        • Kim D.W.
        • Yang K.I.
        • Lee S.T.
        • Byun J.I.
        • Seo J.G.
        • et al.
        Refining general principles of antiepileptic drug treatments for epilepsy.
        J Clin Neurol. 2020; 16: 383-389https://doi.org/10.3988/jcn.2020.16.3.383
        • Ding D.
        • Zhou D.
        • Sander J.W.
        • Wang W.
        • Li S.
        • Hong Z.
        Epilepsy in China: major progress in the past two decades.
        Lancet Neurol. 2021; 20: 316-326https://doi.org/10.1016/S1474-4422(21)00023-5
        • Abou-Khalil B.W
        Update on antiepileptic drugs.
        Continuum (Minneap Minn) 2019. 2019; 25: 508-536https://doi.org/10.1212/CON.0000000000000715
        • Faught E.
        Topiramate in the treatment of partial and generalized epilepsy.
        Neuropsychiatr Dis Treat. 2007; 3: 811-821https://doi.org/10.2147/ndt.s512
        • Guerrini R.
        • Parmeggiani L.
        Topiramate and its clinical applications in epilepsy.
        Expert Opin Pharmacother. 2006; 7: 811-823https://doi.org/10.1517/14656566.7.6.811
        • Latini G.
        • Verrotti A.
        • Manco R.
        • Scardapane A.
        • Del Vecchio A.
        • Chiarelli F.
        Topiramate: its pharmacological properties and therapeutic efficacy in epilepsy.
        Mini Rev Med Chem. 2008; 8: 10-23https://doi.org/10.2174/138955708783331568
        • Campos M.S.A.
        • Ayres L.R.
        • Morelo M.R.S.
        • Carizio F.A.M.
        • Pereira L.R.L.
        Comparative efficacy of antiepileptic drugs for patients with generalized epileptic seizures: systematic review and network meta-analyses.
        Int J Clin Pharm. 2018; 40: 589-598https://doi.org/10.1007/s11096-018-0641-9
        • Song J.M.
        • Hahn J.
        • Kim S.H.
        • Chang M.J.
        Efficacy of treatments for infantile spasms: a systematic review.
        Clin Neuropharmacol. 2017; 40: 63-84https://doi.org/10.1097/WNF.0000000000000200
        • Bresnahan R.
        • Hounsome J.
        • Jette N.
        • Hutton J.L.
        • Marson A.G.
        Topiramate add-on therapy for drug-resistant focal epilepsy.
        Cochrane Database Syst Rev. 2019; 10CD001417https://doi.org/10.1002/14651858.CD001417.pub4
        • Kim H.J.
        • Yang D.
        • Kim S.H.
        • Won D.
        • Kim H.D.
        • Lee J.S.
        • et al.
        Clinical characteristics of KCNQ2 encephalopathy.
        Brain Dev. 2021; 43: 244-250https://doi.org/10.1016/j.braindev.2020.08.015
        • Helbig K.L.
        • Lauerer R.J.
        • Bahr J.C.
        • Souza I.A.
        • Myers C.T.
        • Uysal B.
        • et al.
        De novo pathogenic variants in CACNA1E cause developmental and epileptic encephalopathy with contractures, macrocephaly, and dyskinesias.
        Am J Hum Genet. 2018; 103: 666-678https://doi.org/10.1016/j.ajhg.2018.09.006
        • Carcak N.
        • Ozkara C.
        Seizures and antiepileptic drugs: from pathophysiology to clinical practice.
        Curr Pharm Des. 2017; 23: 6376-6388https://doi.org/10.2174/1381612823666171115101557
        • Hansen C.C.
        • Ljung H.
        • Brodtkorb E.
        • Reimers A.
        Mechanisms underlying aggressive behavior induced by antiepileptic drugs: focus on topiramate, levetiracetam, and perampanel.
        Behav Neurol 2018. 2018; 2064027https://doi.org/10.1155/2018/2064027
        • Boland C.L.
        • Harris J.B.
        • Harris K.B.
        Pharmacological management of obesity in pediatric patients.
        Ann Pharmacother. 2015; 49: 220-232https://doi.org/10.1177/1060028014557859
        • Spritzer S.D.
        • Bravo T.P.
        • Drazkowski J.F.
        Topiramate for treatment in patients with migraine and epilepsy.
        Headache. 2016; 56: 1081-1085https://doi.org/10.1111/head.12826
        • Patsalos P.N.
        • Spencer E.P.
        • Berry D.J.
        Therapeutic drug monitoring of antiepileptic drugs in epilepsy: a 2018 update.
        Ther Drug Monit. 2018; 40: 526-548https://doi.org/10.1097/FTD.0000000000000546
        • Khalil N.Y.
        • AlRabiah H.K.
        • Al Rashoud S.S.
        • Bari A.
        • Wani T.A
        Topiramate: comprehensive profile.
        Profiles Drug Subst Excip Relat Methodol. 2019; 44: 333-378https://doi.org/10.1016/bs.podrm.2018.11.005
        • Lyseng-Williamson K.A.
        • Yang L.P.
        Topiramate: a review of its use in the treatment of epilepsy.
        Drugs. 2007; 67: 2231-2256https://doi.org/10.2165/00003495-200767150-00008
        • Kaplan D.I.
        • Isom L.L.
        • Petrou S.
        Role of sodium channels in epilepsy.
        Cold Spring Harb Perspect Med. 2016; 6https://doi.org/10.1101/cshperspect.a022814
        • Musto E.
        • Gardella E.
        • Moller R.S.
        Recent advances in treatment of epilepsy-related sodium channelopathies.
        Eur J Paediatr Neurol. 2020; 24: 123-128https://doi.org/10.1016/j.ejpn.2019.12.009
        • Menezes L.F.S.
        • Sabia Junior E.F.
        • Tibery D.V.
        • Carneiro L.D.A.
        • Schwartz E.F
        Epilepsy-related voltage-gated sodium channelopathies: a review.
        Front Pharmacol. 2020; 11: 1276https://doi.org/10.3389/fphar.2020.01276
        • Gataullina S.
        • Dulac O.
        From genotype to phenotype in Dravet disease.
        Seizure. 2017; 44: 58-64https://doi.org/10.1016/j.seizure.2016.10.014
        • Lin C.H.
        • Ho C.J.
        • Lu Y.T.
        • Tsai M.H.
        Response to sodium channel blocking antiseizure medications and coding polymorphisms of sodium channel genes in taiwanese epilepsy patients.
        BMC Neurol. 2021; 21: 367https://doi.org/10.1186/s12883-021-02395-2
        • Sun G.C.
        • Werkman T.R.
        • Battefeld A.
        • Clare J.J.
        • Wadman W.J.
        Carbamazepine and topiramate modulation of transient and persistent sodium currents studied in HEK293 cells expressing the Na(v)1.3 alpha-subunit.
        Epilepsia. 2007; 48: 774-782https://doi.org/10.1111/j.1528-1167.2007.01001.x
        • Hayashi K.
        • Ueshima S.
        • Ouchida M.
        • Mashimo T.
        • Nishiki T.
        • Sendo T.
        • et al.
        Therapy for hyperthermia-induced seizures in Scn1a mutant rats.
        Epilepsia. 2011; 52: 1010-1017https://doi.org/10.1111/j.1528-1167.2011.03046.x
        • Rajakulendran S.
        • Hanna M.G.
        The role of calcium channels in epilepsy.
        Cold Spring Harb Perspect Med. 2016; 6a022723https://doi.org/10.1101/cshperspect.a022723
        • Xu J.H.
        • Tang F.R.
        Voltage-dependent calcium channels, calcium binding proteins, and their interaction in the pathological process of epilepsy.
        Int J Mol Sci. 2018; 19https://doi.org/10.3390/ijms19092735
        • Wormuth C.
        • Lundt A.
        • Henseler C.
        • Muller R.
        • Broich K.
        • Papazoglou A.
        • et al.
        Review: cav2.3 R-type voltage-gated Ca(2+) channels - functional implications in convulsive and non-convulsive seizure activity.
        Open Neurol J. 2016; 10: 99-126https://doi.org/10.2174/1874205X01610010099
        • Zhang X.
        • Velumian A.A.
        • Jones O.T.
        • Carlen P.L.
        Modulation of high-voltage-activated calcium channels in dentate granule cells by topiramate.
        Epilepsia. 2000; 41: 52-60https://doi.org/10.1111/j.1528-1157.2000.tb02173.x
        • Kuzmiski J.B.
        • Barr W.
        • Zamponi G.W.
        • MacVicar B.A.
        Topiramate inhibits the initiation of plateau potentials in CA1 neurons by depressing R-type calcium channels.
        Epilepsia. 2005; 46: 481-489https://doi.org/10.1111/j.0013-9580.2005.35304.x
        • Bhagat K.
        • Singh J.V.
        • Pagare P.P.
        • Kumar N.
        • Sharma A.
        • Kaur G.
        • et al.
        Rational approaches for the design of various GABA modulators and their clinical progression.
        Mol Divers. 2020; https://doi.org/10.1007/s11030-020-10068-4
        • Gataullina S.
        • Bienvenu T.
        • Nabbout R.
        • Huberfeld G.
        • Dulac O.
        Gene mutations in paediatric epilepsies cause NMDA-pathy, and phasic and tonic GABA-pathy.
        Dev Med Child Neurol. 2019; 61: 891-898https://doi.org/10.1111/dmcn.14152
        • Shetty A.K.
        • Upadhya D.
        GABA-ergic cell therapy for epilepsy: advances, limitations and challenges.
        Neurosci Biobehav Rev. 2016; 62: 35-47https://doi.org/10.1016/j.neubiorev.2015.12.014
        • Mao X.
        • Guo F.
        • Yu J.
        • Min D.
        • Wang Z.
        • Xie N.
        • et al.
        Up-regulation of GABA transporters and GABA(A) receptor alpha1 subunit in tremor rat hippocampus.
        Neurosci Lett. 2010; 486: 150-155https://doi.org/10.1016/j.neulet.2010.09.033
        • Braat S.
        • Kooy R.F.
        The GABAA receptor as a therapeutic target for neurodevelopmental disorders.
        Neuron. 2015; 86: 1119-1130https://doi.org/10.1016/j.neuron.2015.03.042
        • Hernandez C.C.
        • Macdonald R.L.
        A structural look at GABAA receptor mutations linked to epilepsy syndromes.
        Brain Res. 2019; 1714: 234-247https://doi.org/10.1016/j.brainres.2019.03.004
        • White H.S.
        • Brown S.D.
        • Woodhead J.H.
        • Skeen G.A.
        • Wolf H.H.
        Topiramate modulates GABA-evoked currents in murine cortical neurons by a nonbenzodiazepine mechanism.
        Epilepsia. 2000; 41: 17-20
        • Petroff O.A.
        • Hyder F.
        • Rothman D.L.
        • Mattson R.H.
        Topiramate rapidly raises brain GABA in epilepsy patients.
        Epilepsia. 2001; 42: 543-548https://doi.org/10.1046/j.1528-1157.2001.18800.x
        • Gordey M.
        • DeLorey T.M.
        • Olsen R.W.
        Differential sensitivity of recombinant GABA(A) receptors expressed in Xenopus oocytes to modulation by topiramate.
        Epilepsia. 2000; 41: 25-29
        • Simeone T.A.
        • Wilcox K.S.
        • White H.S.
        Subunit selectivity of topiramate modulation of heteromeric GABA(A) receptors.
        Neuropharmacology. 2006; 50: 845-857https://doi.org/10.1016/j.neuropharm.2005.12.006
        • Barker-Haliski M.
        • White H.S.
        Glutamatergic mechanisms associated with seizures and epilepsy.
        Cold Spring Harb Perspect Med. 2015; 5a022863https://doi.org/10.1101/cshperspect.a022863
        • Hanada T.
        Ionotropic glutamate receptors in epilepsy: a review focusing on AMPA and NMDA receptors.
        Biomolecules. 2020; 10https://doi.org/10.3390/biom10030464
        • Charsouei S.
        • Jabalameli M.R.
        • Karimi-Moghadam A.
        Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology.
        Acta Neurol Belg. 2020; 120: 531-544https://doi.org/10.1007/s13760-020-01318-1
        • Gibbs 3rd, J.W.
        • Sombati S.
        • DeLorenzo R.J.
        • Coulter D.A.
        Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons.
        Epilepsia. 2000; 41: 10-16https://doi.org/10.1111/j.1528-1157.2000.tb02164.x
        • Angehagen M.
        • Ben-Menachem E.
        • Shank R.
        • Ronnback L.
        • Hansson E.
        Topiramate modulation of kainate-induced calcium currents is inversely related to channel phosphorylation level.
        J Neurochem. 2004; 88: 320-325https://doi.org/10.1046/j.1471-4159.2003.02186.x
        • Angehagen M.
        • Ronnback L.
        • Hansson E.
        • Ben-Menachem E.
        Topiramate reduces AMPA-induced Ca(2+) transients and inhibits GluR1 subunit phosphorylation in astrocytes from primary cultures.
        J Neurochem. 2005; 94: 1124-1130https://doi.org/10.1111/j.1471-4159.2005.03259.x
        • Kanda T.
        • Kurokawa M.
        • Tamura S.
        • Nakamura J.
        • Ishii A.
        • Kuwana Y.
        • et al.
        Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER).
        Life Sci. 1996; 59: 1607-1616https://doi.org/10.1016/0024-3205(96)00492-4
        • Deng Y.
        • Wang M.
        • Jiang L.
        • Ma C.
        • Xi Z.
        • Li X.
        • et al.
        A comparison of extracellular excitatory amino acids release inhibition of acute lamotrigine and topiramate treatment in the hippocampus of PTZ-kindled epileptic rats.
        J Biomed Nanotechnol. 2013; 9: 1123-1128https://doi.org/10.1166/jbn.2013.1599
        • Cuffaro D.
        • Nuti E.
        • Rossello A.
        An overview of carbohydrate-based carbonic anhydrase inhibitors.
        J Enzyme Inhib Med Chem. 2020; : 1-17https://doi.org/10.1080/14756366.2020.1825409
        • Kumar S.
        • Rulhania S.
        • Jaswal S.
        • Monga V.
        Recent advances in the medicinal chemistry of carbonic anhydrase inhibitors.
        Eur J Med Chem. 2020; 112923https://doi.org/10.1016/j.ejmech.2020.112923
        • Aggarwal M.
        • Kondeti B.
        • McKenna R.
        Anticonvulsant/antiepileptic carbonic anhydrase inhibitors: a patent review.
        Expert Opin Ther Pat. 2013; 23: 717-724https://doi.org/10.1517/13543776.2013.782394
        • Hamidi S.
        • Avoli M.
        Carbonic anhydrase inhibition by acetazolamide reduces in vitro epileptiform synchronization.
        Neuropharmacology. 2015; 95: 377-387https://doi.org/10.1016/j.neuropharm.2015.04.015
        • Supuran C.T.
        Applications of carbonic anhydrases inhibitors in renal and central nervous system diseases.
        Expert Opin Ther Pat. 2018; 28: 713-721https://doi.org/10.1080/13543776.2018.1519023
        • Dodgson S.J.
        • Shank R.P.
        • Maryanoff B.E.
        Topiramate as an inhibitor of carbonic anhydrase isoenzymes.
        Epilepsia. 2000; 41: 35-39https://doi.org/10.1111/j.1528-1157.2000.tb06047.x
        • Vullo D.
        • Voipio J.
        • Innocenti A.
        • Rivera C.
        • Ranki H.
        • Scozzafava A.
        • et al.
        Carbonic anhydrase inhibitors. Inhibition of the human cytosolic isozyme VII with aromatic and heterocyclic sulfonamides.
        Bioorg Med Chem Lett. 2005; 15: 971-976https://doi.org/10.1016/j.bmcl.2004.12.052
        • Bruno E.
        • Buemi M.R.
        • De Luca L.
        • Ferro S.
        • Monforte A.M.
        • Supuran C.T.
        • et al.
        In vivo evaluation of selective carbonic anhydrase inhibitors as potential anticonvulsant agents.
        ChemMedChem. 2016; 11: 1812-1818https://doi.org/10.1002/cmdc.201500596
        • Trojnar M.K.
        • Malek R.
        • Chroscinska M.
        • Nowak S.
        • Blaszczyk B.
        • Czuczwar S.J.
        Neuroprotective effects of antiepileptic drugs.
        Pol J Pharmacol. 2002; 54: 557-566
        • Rigoulot M.A.
        • Koning E.
        • Ferrandon A.
        • Nehlig A.
        Neuroprotective properties of topiramate in the lithium-pilocarpine model of epilepsy.
        J Pharmacol Exp Ther. 2004; 308: 787-795https://doi.org/10.1124/jpet.103.057091
        • Lotowska J.
        • Sobaniec P.
        • Sobaniec-Lotowska M.
        • Szukiel B.
        • Lukasik M.
        • Lotowska S.
        Effects of topiramate on the ultrastructure of synaptic endings in the hippocampal CA1 and CA3 sectors in the rat experimental model of febrile seizures: the first electron microscopy report.
        Folia Neuropathol. 2019; 57: 267-276https://doi.org/10.5114/fn.2019.88456
        • Motaghinejad M.
        • Motevalian M.
        Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.
        Eur J Pharmacol. 2016; 784: 181-191https://doi.org/10.1016/j.ejphar.2016.04.036
        • Motaghinejad M.
        • Motevalian M.
        • Fatima S.
        • Beiranvand T.
        • Mozaffari S.
        Topiramate via NMDA, AMPA/kainate, GABAA and Alpha2 receptors and by modulation of CREB/BDNF and Akt/GSK3 signaling pathway exerts neuroprotective effects against methylphenidate-induced neurotoxicity in rats.
        J Neural Transm (Vienna. 2017; 124: 1369-1387https://doi.org/10.1007/s00702-017-1771-2
        • Shalaby H.N.
        • El-Tanbouly D.M.
        • Zaki H.F.
        Topiramate mitigates 3-nitropropionic acid-induced striatal neurotoxicity via modulation of AMPA receptors.
        Food Chem Toxicol. 2018; 118: 227-234https://doi.org/10.1016/j.fct.2018.05.022
        • Rheims S.
        • Ryvlin P.
        Pharmacotherapy for tonic-clonic seizures.
        Expert Opin Pharmacother. 2014; 15: 1417-1426https://doi.org/10.1517/14656566.2014.915029
        • Liu J.
        • Tai Y.J.
        • Wang L.N.
        Topiramate for juvenile myoclonic epilepsy.
        Cochrane Database Syst Rev. 2021; 11CD010008https://doi.org/10.1002/14651858.CD010008.pub5
        • Ishii A.
        • Watkins J.C.
        • Chen D.
        • Hirose S.
        • Hammer M.F.
        Clinical implications of SCN1A missense and truncation variants in a large Japanese cohort with Dravet syndrome.
        Epilepsia. 2017; 58: 282-290https://doi.org/10.1111/epi.13639
        • Knupp K.G.
        • Wirrell E.C.
        Treatment strategies for dravet syndrome.
        CNS Drugs. 2018; 32: 335-350https://doi.org/10.1007/s40263-018-0511-y
        • Zhang L.
        • Wang J.
        • Wang C.
        Efficacy and safety of antiseizure medication for Lennox-Gastaut syndrome: a systematic review and network meta-analysis.
        Dev Med Child Neurol. 2021; https://doi.org/10.1111/dmcn.15072
        • Demarquay G.
        • Rheims S.
        Relationships between migraine and epilepsy: pathophysiological mechanisms and clinical implications.
        Rev Neurol (Paris. 2021; 177: 791-800https://doi.org/10.1016/j.neurol.2021.06.004
        • Wang X.Q.
        • Lang S.Y.
        • Zhang X.
        • Zhu F.
        • Wan M.
        • Shi X.B.
        • et al.
        Comorbidity between headache and epilepsy in a Chinese epileptic center.
        Epilepsy Res. 2014; 108: 535-541https://doi.org/10.1016/j.eplepsyres.2013.12.013
        • Keezer M.R.
        • Sisodiya S.M.
        • Sander J.W.
        Comorbidities of epilepsy: current concepts and future perspectives.
        Lancet Neurol. 2016; 15: 106-115https://doi.org/10.1016/S1474-4422(15)00225-2
        • Duko B.
        • Ayalew M.
        • Toma A.
        The epidemiology of headaches among patients with epilepsy: a systematic review and meta-analysis.
        J Headache Pain. 2020; 21: 3https://doi.org/10.1186/s10194-020-1074-0
        • Shu Y.
        • Xu Y.
        • Xiao W.
        • Deng X.
        • Zeng Y.
        • Chen R.
        • et al.
        A conjoint analysis of epilepsy and migraine through network-and-pathway-based method.
        Ann Palliat Med. 2020; https://doi.org/10.21037/apm-19-690
        • Zarcone D.
        • Corbetta S.
        Shared mechanisms of epilepsy, migraine and affective disorders.
        Neurol Sci. 2017; 38: 73-76https://doi.org/10.1007/s10072-017-2902-0
        • Mantegazza M.
        • Cestele S.
        Pathophysiological mechanisms of migraine and epilepsy: similarities and differences.
        Neurosci Lett. 2018; 667: 92-102https://doi.org/10.1016/j.neulet.2017.11.025
        • Liao J.
        • Tian X.
        • Wang H.
        • Xiao Z.
        Epilepsy and migraine-are they comorbidity?.
        Genes Dis. 2018; 5: 112-118https://doi.org/10.1016/j.gendis.2018.04.007
        • Benbow T.
        • Cairns B.E.
        Dysregulation of the peripheral glutamatergic system: a key player in migraine pathogenesis?.
        Cephalalgia. 2021; 41: 1249-1261https://doi.org/10.1177/03331024211017882
        • Kim H.
        • Faught E.
        • Thurman D.J.
        • Fishman J.
        • Kalilani L.
        Antiepileptic drug treatment patterns in women of childbearing age with epilepsy.
        JAMA Neurol. 2019; 76: 783-790https://doi.org/10.1001/jamaneurol.2019.0447
        • Ben-Menachem E.
        • Axelsen M.
        • Johanson E.H.
        • Stagge A.
        • Smith U.
        Predictors of weight loss in adults with topiramate-treated epilepsy.
        Obes Res. 2003; 11: 556-562https://doi.org/10.1038/oby.2003.78
        • Ben-Menachem E.
        • Sander J.W.
        • Stefan H.
        • Schwalen S.
        • Schauble B.
        Topiramate monotherapy in the treatment of newly or recently diagnosed epilepsy.
        Clin Ther. 2008; 30: 1180-1195https://doi.org/10.1016/s0149-2918(08)80045-8
        • Verrotti A.
        • Scaparrotta A.
        • Agostinelli S.
        • Di Pillo S.
        • Chiarelli F.
        • Grosso S.
        Topiramate-induced weight loss: a review.
        Epilepsy Res. 2011; 95: 189-199https://doi.org/10.1016/j.eplepsyres.2011.05.014
        • Scozzafava A.
        • Supuran C.T.
        • Carta F.
        Antiobesity carbonic anhydrase inhibitors: a literature and patent review.
        Expert Opin Ther Pat. 2013; 23: 725-735https://doi.org/10.1517/13543776.2013.790957
        • Ozcelik A.A.
        • Serdaroglu A.
        • Bideci A.
        • Arhan E.
        • Soysal S.
        • Demir E.
        • et al.
        The effect of topiramate on body weight and ghrelin, leptin, and neuropeptide-Y levels of prepubertal children with epilepsy.
        Pediatr Neurol. 2014; 51: 220-224https://doi.org/10.1016/j.pediatrneurol.2014.05.001
        • Villanueva V.
        • Sanchez-Alvarez J.C.
        • Carreno M.
        • Salas-Puig J.
        • Caballero-Martinez F.
        • Gil-Nagel A
        Initiating antiepilepsy treatment: an update of expert consensus in Spain.
        Epilepsy Behav. 2021; 114107540https://doi.org/10.1016/j.yebeh.2020.107540
        • Du Y.
        • Lin J.
        • Shen J.
        • Ding S.
        • Ye M.
        • Wang L.
        • et al.
        Adverse drug reactions associated with six commonly used antiepileptic drugs in southern China from 2003 to 2015.
        BMC Pharmacol Toxicol. 2019; 20: 7https://doi.org/10.1186/s40360-019-0285-y
        • Choi J.
        • Yoon D.
        • Park M.
        • Joung K.I.
        • Shin J.Y.
        Topiramate-related adverse events: pattern and signals in the Korea adverse event reporting system, 2010-2017.
        Medicine (Baltimore). 2020; 99: e22669https://doi.org/10.1097/MD.0000000000022669
        • Sierra-Rodriguez M.A.
        • Rodriguez-Vicente L.
        • Chavarri-Garcia J.J.
        • Del Rio-Mayor J.L.
        Acute narrow-angle glaucoma induced by topiramate with acute myopia and macular striae: a case report.
        Arch Soc Esp Oftalmol (Engl Ed). 2019; 94: 130-133https://doi.org/10.1016/j.oftal.2018.11.005
        • Dell'Orto V.G.
        • Belotti E.A.
        • Goeggel-Simonetti B.
        • Simonetti G.D.
        • Ramelli G.P.
        • Bianchetti M.G.
        • et al.
        Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review.
        Br J Clin Pharmacol. 2014; 77: 958-964https://doi.org/10.1111/bcp.12283
        • Gupta S.
        • Gao J.J.
        • Emmett M.
        • Fenves A.Z.
        Topiramate and metabolic acidosis: an evolving story.
        Hosp Pract (1995. 2017; 45: 192-195https://doi.org/10.1080/21548331.2017.1370969
        • Dussaule C.
        • Bouilleret V.
        Psychiatric effects of antiepileptic drugs in adults.
        Geriatr Psychol Neuropsychiatr Vieil. 2018; 16: 181-188https://doi.org/10.1684/pnv.2018.0733
        • Besag F.M.C.
        • Vasey M.J.
        Neurocognitive effects of antiseizure medications in children and adolescents with epilepsy.
        Paediatr Drugs. 2021; 23: 253-286https://doi.org/10.1007/s40272-021-00448-0
        • Tang Y.
        • Xia W.
        • Yu X.
        • Zhou B.
        • Wu X.
        • Lui S.
        • et al.
        Altered cerebral activity associated with topiramate and its withdrawal in patients with epilepsy with language impairment: an fMRI study using the verb generation task.
        Epilepsy Behav. 2016; 59: 98-104https://doi.org/10.1016/j.yebeh.2016.03.013
        • Yasuda C.L.
        • Centeno M.
        • Vollmar C.
        • Stretton J.
        • Symms M.
        • Cendes F.
        • et al.
        The effect of topiramate on cognitive fMRI.
        Epilepsy Res. 2013; 105: 250-255https://doi.org/10.1016/j.eplepsyres.2012.12.007
        • Szaflarski J.P.
        • Allendorfer J.B.
        Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
        Epilepsy Behav. 2012; 24: 74-80https://doi.org/10.1016/j.yebeh.2012.02.022
        • Pietrzak B.
        • Konopka A.
        • Wojcieszak J.
        Effect of topiramate on hippocampus-dependent spatial memory in rats.
        Pharmacol Rep. 2013; 65: 1152-1162https://doi.org/10.1016/s1734-1140(13)71473-7
        • Moavero R.
        • Santarone M.E.
        • Galasso C.
        • Curatolo P.
        Cognitive and behavioral effects of new antiepileptic drugs in pediatric epilepsy.
        Brain Dev. 2017; 39: 464-469https://doi.org/10.1016/j.braindev.2017.01.006
        • Izzedine H.
        • Launay-Vacher V.
        • Deray G.
        Topiramate-induced renal tubular acidosis.
        Am J Med. 2004; 116: 281-282https://doi.org/10.1016/j.amjmed.2003.08.021
        • Mirza N.
        • Marson A.G.
        • Pirmohamed M.
        Effect of topiramate on acid-base balance: extent, mechanism and effects.
        Br J Clin Pharmacol. 2009; 68: 655-661https://doi.org/10.1111/j.1365-2125.2009.03521.x
        • Yamamoto Y.
        • Usui N.
        • Nishida T.
        • Mori M.
        • Takahashi Y.
        • Imai K.
        • et al.
        Influence of renal function on pharmacokinetics of antiepileptic drugs metabolized by CYP3A4 in a patient with renal impairment.
        Ther Drug Monit. 2018; 40: 144-147https://doi.org/10.1097/FTD.0000000000000461
        • Hu Y.
        • Lu Y.
        • Yu W.
        • Shen D.
        • Xiao Z.
        • Xi Z.
        • et al.
        Long-term retention rate of topiramate as initial monotherapy in Chinese patients with newly diagnosed epilepsy: a prospective, observational study.
        Epilepsy Res. 2010; 90: 278-284https://doi.org/10.1016/j.eplepsyres.2010.06.004
        • Sisodiya S.M.
        Precision medicine and therapies of the future.
        Epilepsia. 2021; 62: S90-S105https://doi.org/10.1111/epi.16539
        • Marini C.
        • Giardino M.
        Novel treatments in epilepsy guided by genetic diagnosis.
        Br J Clin Pharmacol. 2021; https://doi.org/10.1111/bcp.15139
        • Riva A.
        • Golda A.
        • Balagura G.
        • Amadori E.
        • Vari M.S.
        • Piccolo G.
        • et al.
        New trends and most promising therapeutic strategies for epilepsy treatment.
        Front Neurol. 2021; 12753753https://doi.org/10.3389/fneur.2021.753753
        • Parambi D.G.T.
        • Alharbi K.S.
        • Kumar R.
        • Harilal S.
        • Batiha G.E.
        • Cruz-Martins N.
        • et al.
        Gene therapy approach with an emphasis on growth factors: theoretical and clinical outcomes in neurodegenerative diseases.
        Mol Neurobiol. 2021; https://doi.org/10.1007/s12035-021-02555-y
        • Colasante G.
        • Qiu Y.
        • Massimino L.
        • Di Berardino C.
        • Cornford J.H.
        • Snowball A.
        • et al.
        In vivo CRISPRa decreases seizures and rescues cognitive deficits in a rodent model of epilepsy.
        Brain. 2020; 143: 891-905https://doi.org/10.1093/brain/awaa045
        • Upadhya D.
        • Hattiangady B.
        • Castro O.W.
        • Shuai B.
        • Kodali M.
        • Attaluri S.
        • et al.
        Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration.
        Proc Natl Acad Sci U S A. 2019; 116: 287-296https://doi.org/10.1073/pnas.1814185115