The epileptology of Aicardi-Goutières syndrome: electro-clinical-radiological findings

Published:November 30, 2020DOI:https://doi.org/10.1016/j.seizure.2020.11.019

      Highlights

      • Epilepsy in AGS is significantly related to the severity of brain calcification and the presence of startle reactions.
      • Disruption of EEG organization is related to microcephaly and highly abnormal MRI signal intensity.
      • EEG hallmarks are electrical organization disruption, focal slow and fast activity, and IEDs, regardless of the presence of seizures.

      Abstract

      Objective

      Although epileptic seizures occur in approximately a quarter of patients with Aicardi-Goutières syndrome (AGS), their phenotypic and electrophysiological characterization remains elusive. The aim of our study was to characterize epilepsy phenotypes and electroencephalographic (EEG) patterns in AGS and look for possible correlations with clinical, genetic and neuroradiological features.

      Methods

      We selected patients with an established AGS diagnosis followed at three Italian reference centers. Medical records, EEGs and MRI/CT findings were reviewed. EEGs were independently and blindly reviewed by three board-certified pediatric epileptologists. Chi square and Fisher’s exact tests were used to test associations between epilepsy and EEG feature categories and clinical, radiological and genetic variables.

      Results

      Twenty-seven patients were enrolled. We reviewed 63 EEGs and at least one brain MRI scan per patient. Epilepsy, mainly in the form of epileptic spasms and focal seizures, was present in 37 % of the cohort; mean age at epilepsy onset was 9.5 months (range 1–36). The presence of epilepsy was associated with calcification severity (p = 0.016) and startle reactions (p = 0.05). Organization of EEG electrical activity appeared to be disrupted or markedly disrupted in 73 % of cases. Severe EEG disorganization correlated with microcephaly (p < 0.001) and highly abnormal MRI T2-weighted signal intensity in white matter (p = 0.022).
      Physiological organization of the EEG was found to be better preserved during sleep (87 %) than wakefulness (38 %). Focal slow activity was recorded in more than one third of cases. Fast activity, either diffuse or with frontal location, was more frequent in the awake state (78 %) than in sleep (50 %). Interictal epileptiform discharges (IEDs) were present in 33 % of awake and 45 % of sleep recordings. IEDs during sleep were associated with a higher risk of a epileptic seizures (p = 0.008).

      Significance

      The hallmarks of EEG recordings in AGS were found to be: disruption of electrical organization, the presence of focal slow and fast activity, and the presence of IEDs, both in patients with and in those without epilepsy. The associations between epilepsy and calcification and between EEG pattern and the finding of a highly abnormal white matter T2 signal intensity suggest a common anatomical correlate. However, the complex anatomical-electroclinical basis of AGS-related epilepsy still requires further elucidation.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Aicardi J.
        • Goutières F.
        A progressive familial encephalopathy in infancy with calcifications of the basal ganglia and chronic cerebrospinal fluid lymphocytosis.
        Ann Neurol. 1984; 15: 49-54
        • Crow Y.J.
        • Chase D.S.
        • Lowenstein Schmidt J.
        • Szynkiewicz M.
        • Forte G.M.
        • Gornall H.L.
        • et al.
        Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1.
        Am J Med Genet A. 2015; 167A: 296-312
        • Crow Y.J.
        • Manel N.
        Aicardi-Goutières syndrome and the type I interferonopathies.
        Nat Rev Immunol. 2015; 15: 429-440
        • Orcesi S.
        • La Piana R.
        • Fazzi E.
        Aicardi-Goutières syndrome.
        Br Med Bull. 2009; 89: 183-201
        • Livingston J.H.
        • Crow Y.J.
        Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: aicardi-goutières syndrome and beyond.
        Neuropediatrics. 2016; 47: 355-360
        • La Piana R.
        • Uggetti C.
        • Roncarolo F.
        • Vanderver A.
        • Olivieri I.
        • Tonduti D.
        • et al.
        Neuroradiologic patterns and novel imaging findings in Aicardi-Goutières syndrome.
        Neurology. 2016; 86: 28-35
        • Goutières F.
        • Aicardi J.
        • Barth P.G.
        • Lebon P.
        Aicardi-Goutières syndrome: an update and results of interferon-alpha studies.
        Ann Neurol. 1998; 44: 900-907
        • Lanzi G.
        • Fazzi E.
        • D’Arrigo S.
        Aicardi-Goutières syndrome: a description of 21 new cases and a comparison with the literature.
        Eur J Paediatr Neurol. 2002; 6 (discussion A23-5, A77-86): A9-22
        • Rice G.
        • Patrick T.
        • Parmar R.
        • Taylor C.F.
        • Aeby A.
        • Aicardi J.
        • et al.
        Clinical and molecular phenotype of Aicardi-Goutieres syndrome.
        Am J Hum Genet. 2007; 81: 713-725
        • Izzotti A.
        • Longobardi M.
        • Cartiglia C.
        • Anzuini F.
        • Arrigo P.
        • Fazzi E.
        • et al.
        Different mutations in three prime repair exonuclease 1 and ribonuclease H2 genes affect clinical features in Aicardi-Goutieres syndrome.
        J Child Neurol. 2012; 27: 51-60
        • Ramantani G.
        • Maillard L.G.
        • Bast T.
        • Husain R.A.
        • Niggemann P.
        • Kohlhase J.
        • et al.
        Epilepsy in aicardi-goutières syndrome.
        Eur J Paediatr Neurol. 2014; 1830-7.13
        • Al Mutairi F.
        • Alfadhel M.
        • Nashabat M.
        • El-Hattab A.W.
        • Ben-Omran T.
        • Hertecant J.
        • et al.
        Phenotypic and molecular Spectrum of aicardi-goutières syndrome: a study of 24 patients.
        Pediatr Neurol. 2018; 78: 35-40
        • Garau J.
        • Cavallera V.
        • Valente M.
        • Tonduti D.
        • Sproviero D.
        • Zucca S.
        • et al.
        Molecular genetics and interferon signature in the italian aicardi goutières syndrome cohort: report of 12 new cases and literature review.
        J Clin Med. 2019; 8: 750
        • Ramantani G.
        • Häusler M.
        • Niggemann P.
        • Wessling B.
        • Guttmann H.
        • Mull M.
        • et al.
        Aicardi-Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations.
        J Child Neurol. 2011; 26: 1425-1428
        • Abdel-Salam G.M.
        • Zaki M.S.
        • Lebon P.
        • Meguid N.A.
        Aicardi-Goutières syndrome: clinical and neuroradiological findings of 10 new cases.
        Acta Paediatr. 2004; 93: 929-936
        • Lanzi G.
        • Fazzi E.
        • D’Arrigo S.
        • Orcesi S.
        • Maraucci I.
        • Uggetti C.
        • et al.
        The natural history of Aicardi-Goutières syndrome: follow-up of 11 Italian patients.
        Neurology. 2005; 64: 1621-1624
        • Tonduti D.
        • Panteghini C.
        • Pichiecchio A.
        • Decio A.
        • Carecchio M.
        • Reale C.
        • et al.
        Encephalopathies with intracranial calcification in children: clinical and genetic characterization.
        Orphanet J Rare Dis. 2018; 13: 135
        • Adang L.
        • Gavazzi F.
        • De Simone M.
        • Fazzi E.
        • Galli J.
        • Koh J.
        • et al.
        Developmental outcomes of aicardi goutières syndrome.
        J Child Neurol. 2020; 35: 7-16
        • Palisano R.
        • Rosenbaum P.
        • Walter S.
        • Russell D.
        • Wood E.
        • Galuppi B.
        Development and reliability of a system to classify gross motor function in children with cerebral palsy.
        Dev Med Child Neurol. 1997; 39: 214-223
        • Eliasson A.C.
        • Krumlinde-Sundholm L.
        • Rösblad B.
        • Beckung E.
        • Arner M.
        • Ohrvall A.M.
        • et al.
        The Manual Ability Classification System (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability.
        Dev Med Child Neurol. 2006; 48: 549-554
        • Hidecker M.J.
        • Paneth N.
        • Rosenbaum P.L.
        • Kent R.D.
        • Lillie J.
        • Eulenberg J.B.
        • et al.
        Developing and validating the Communication Function Classification System for individuals with cerebral palsy.
        Dev Med Child Neurol. 2011; 53: 704-710
        • Bakker M.J.
        • van Dijk J.G.
        • van den Maagdenberg A.M.
        • Tijssen M.A.
        Startle syndromes.
        Lancet Neurol. 2006; 5: 513-524
        • Fisher RS
        The New Classification of Seizures by the International League Against Epilepsy 2017.
        Curr Neurol Neurosci Rep. 2017; 17: 48
        • Beniczky S.
        • Aurlien H.
        • Brøgger J.C.
        • Hirsch L.J.
        • Schomer D.L.
        • Trinka E.
        • et al.
        Standardized computer-based organized reporting of EEG: SCORE - Second version.
        Clin Neurophysiol. 2017; 128: 2334-2346
        • Kane N.
        • Acharya J.
        • Benickzy S.
        • Caboclo L.
        • Finnigan S.
        • Kaplan P.W.
        • et al.
        A revised glossary of terms most commonly used by clinical electroencephalographers and updated proposal for the report format of the EEG findings. Revision 2017.
        Clin Neurophysiol Pract. 2017; 2: 170-185
        • Uggetti C.
        • La Piana R.
        • Orcesi S.
        • Egitto M.G.
        • Crow Y.J.
        • Fazzi E.
        Aicardi-Goutieres syndrome: neuroradiologic findings and follow-up.
        AJNR Am J Neuroradiol. 2009; 30: 1971-1976
        • Crow Y.J.
        • Leitch A.
        • Hayward B.E.
        • Garner A.
        • Parmar R.
        • Griffith E.
        • et al.
        Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutières syndrome and mimic congenital viral brain infection.
        Nat Genet. 2006; 38: 910-916
        • Tonduti D.
        • Izzo G.
        • D’Arrigo S.
        • Riva D.
        • Moroni I.
        • Zorzi G.
        • et al.
        Spontaneous MRI improvement and absence of cerebral calcification in Aicardi-Goutières syndrome: diagnostic and disease-monitoring implications.
        Mol Genet Metab. 2019; 126: 489-494
        • Gastaut H.
        • Pinsard N.
        • Raybaud C.
        • Aicardi J.
        • Zifkin B.
        Lissencephaly (agyria-pachygyria): clinical findings and serial EEG studies.
        Dev Med Child Neurol. 1987; 29: 167-180
        • Quirk J.A.
        • Kendall B.
        • Kingsley D.P.
        • Boyd S.G.
        • Pitt M.C.
        EEG features of cortical dysplasia in children.
        Neuropediatrics. 1993; 24: 193-199
        • Raymond A.A.
        • Fish D.R.
        EEG features of focal malformations of cortical development.
        J Clin Neurophysiol. 1996; 13: 495-506
        • Alfei E.
        • Raviglione F.
        • Franceschetti S.
        • D’Arrigo S.
        • Milani D.
        • Selicorni A.
        • et al.
        Seizures and EEG features in 74 patients with genetic-dysmorphic syndromes.
        Am J Med Genet A. 2014; 164A: 3154-3161
        • van der Knaap M.S.
        • Bugiani M.
        Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms.
        Acta Neuropathol. 2017; 134: 351-382
        • Adang L.A.
        • Sherbini O.
        • Ball L.
        • Bloom M.
        • Darbari A.
        • Amartino H.
        • et al.
        Revised consensus statement on the preventive and symptomatic care of patients with leukodystrophies.
        Mol Genet Metab. 2017; 122: 18-32
        • Dubey M.
        • Brouwers E.
        • Hamilton E.M.C.
        • Stiedl O.
        • Bugiani M.
        • Koch H.
        • et al.
        Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts.
        Ann Neurol. 2018; 83: 636-649
        • Siracusa R.
        • Fusco R.
        • Cuzzocrea S.
        Astrocytes: Role and Functions in Brain Pathologies.
        Front Pharmacol. 2019; 10: 1114
        • Sase S.
        • Takanohashi A.
        • Vanderver A.
        • Almad A.
        Astrocytes, an active player in Aicardi-Goutières syndrome.
        Brain Pathol. 2018; 28: 399-407
        • Gao F.
        • Gao Y.
        • Zhang S.J.
        • Zhe X.
        • Meng F.L.
        • Qian H.
        • et al.
        Alteration of plasma cytokines in patients with active epilepsy.
        Acta Neurol Scand. 2017; 135: 663-669
        • Wu J.
        • Tarabishy B.
        • Hu J.
        • Miao Y.
        • Cai Z.
        • Xuan Y.
        • et al.
        Cortical calcification in Sturge-Weber Syndrome on MRI-SWI: relation to brain perfusion status and seizure severity.
        J Magn Reson Imaging. 2011; 34: 791-798
        • Zagaglia S.
        • Selch C.
        • Nisevic J.R.
        • Mei D.
        • Michalak Z.
        • Hernandez-Hernandez L.
        • et al.
        Neurologic phenotypesassociated with COL4A1/2 mutations: expanding the spectrum of disease.
        Neurology. 2018; 91: e2078-e2088
        • Zhang M.N.
        • Zou L.P.
        • Wang Y.Y.
        • Pang L.Y.
        • Ma S.F.
        • Huang L.L.
        • et al.
        GCalcification in cerebral parenchyma affects pharmacoresistant epilepsy in tuberous sclerosis.
        Seizure. 2018; 60: 86-90
        • Julian T.
        • Hadjivassiliou M.
        • Zis P.
        Gluten sensitivity and epilepsy: a systematic review.
        J Neurol. 2019; 266: 1557-1565
        • Kim Y.S.
        • Park J.
        • Park Y.
        • Hwang K.
        • Koo D.L.
        • Kim D.
        • et al.
        Intracranial cortical calcifications in a focal epilepsy patient with pseudohypoparathyroidism.
        J Epilepsy Res. 2016; 6: 31-35