Highlights
- •Seizure detection devices may be useful for reporting ASM trial primary endpoints.
- •The highest performing devices are SPEAC (GTCs) and a wireless EEG device (FIAs).
- •Some devices are also capable of reporting secondary endpoints in ASM trials.
- •Recommendations are put forth to address limitations in device validation studies.
- •A framework is suggested to streamline testing before device use in ASM trials.
Abstract
Objective
Methods
Results
Discussion
Keywords
1. Introduction
510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K172935 [Accessed 24 July 2018].
2. Methods
2.1 Evaluating SDD performance and reporting capabilities
2.2 Literature search strategy

2.3 Evaluating SDD primary endpoint measurement capabilities
True positive (TP); False positive (FP); False negative (FN)
3. Results
3.1 Commercial SDD performance
Paper | Modality | Seizure Type | Commercial Name | PWS | Precision | Recall | F1-score |
---|---|---|---|---|---|---|---|
Jeppesen et al. [ [16] ]
Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder. Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2017. 2017; : 4082-4085https://doi.org/10.1109/EMBC.2017.8037753 | ECG | NS | ePatch | 7 | 1.00 | 1.00 | 1.00 |
Szabo et al. [ [10] ] | sEMG | GTC | SPEAC | 11 | 0.95 | 0.95 | 0.95 |
Sareen et al. [ [17] ] | Wireless EEG | NS | Emotiv Epoch | 5 | 0.95 | 0.94 | 0.94 |
Sullivan et al. [ [18] ] | Inertial | GTC | SmartWatch | 15 | 0.88 | 0.99 | 0.93 |
Kjaer et al. [ [15] ] | Wireless EEG | Absence | Actiwave | 6 | 0.87 | 0.98 | 0.92 |
Beniczky et al. [ [19] ] | Inertial | GTC | Epi-Care Free | 20 | 0.81 | 0.90 | 0.85 |
Kramer et al. [ [25] ] | Inertial | NS | EpiLert | 15 | 0.71 | 0.91 | 0.80 |
Onorati et al. [ [26] ] | Multimodal | NS | E3/E4 | 22 | 0.51 | 0.95 | 0.66 |
Velez et al. [ [21] ] | Inertial | GTC | SmartWatch | 10 | 0.43 | 0.92 | 0.59 |
Narechania et al. [ [27] ] | Pressure | GTC | Emfit | 13 | 0.43 | 0.89 | 0.58 |
Fulton et al. [ [23] ] | Multimodal | GTC | Medpage: MP5 | 15 | 1.00 | 0.11 | 0.20 |
Halford et al. [ [20] ] | sEMG | GTC | SPEAC | 61 | 0.06 | 1.00 | 0.12 |
Lockman et al. [ [22] ] | Inertial | NS | SmartWatch | 6 | 0.03 | 0.88 | 0.06 |
Carlson et al. [ [24] ] | Multimodal | GTC | Medpage: MP5 | 6 | 0.03 | 0.63 | 0.06 |
Fulton et al. [ [23] ] | Inertial | NS | Medpage: ST2 | 15 | 1.00 | 0.02 | 0.04 |
Onorati et al. [ [11] ] | Multimodal | NS | Embrace | 4 | 0.02 | 1.00 | 0.03 |
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
3.2 Non-commercial SDD performance
Paper | Modality | Seizure Type | PWS | Precision | Recall | F1-score |
---|---|---|---|---|---|---|
Cogan et al. [ [28] ]
Epileptic seizure detection using wristworn biosensors. Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2015. 2015; : 5086-5089https://doi.org/10.1109/EMBC.2015.7319535 | Multimodal | NS | 3 | 0.88 | 1.00 | 0.94 |
Kusmakar et al. [ [29] ]
Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor. 2016 38th annu. int. conf. IEEE eng. med. biol. soc. EMBC 2016, IEEE, institute of electrical and electronics engineers. 2016; : 1006-1009https://doi.org/10.1109/EMBC.2016.7590872 | Inertial | NS | 16 | 0.88 | 1.00 | 0.94 |
Ahmed et al. [ [31] ]
A wearable sensor based multi-criteria-decision-system for real-time seizure detection. Conf proc annu int conf IEEE eng med biol soc ieee eng med biol soc annu conf 2017. 2017; : 2377-2380https://doi.org/10.1109/EMBC.2017.8037334 | Multimodal | NS | 4 | 0.96 | 0.90 | 0.93 |
Zibrandtsen et al. [ [30] ] | Wireless EEG | FIA | 8 | 0.85 | 0.92 | 0.88 |
Borujeny et al. [ [32] ] | Inertial | NS | 3 | 0.85 | 0.85 | 0.85 |
Nijsen et al. [ [36] ] | Inertial | NS | 7 | 0.65 | 1.00 | 0.79 |
Cuppens et al. [ [37] ] | Inertial | FIA | 7 | 0.60 | 0.95 | 0.74 |
Massé et al. [ [38] ] | ECM | NS | 3 | 0.70 | 0.75 | 0.72 |
Van de Vel et al. [ [39] ] | Inertial | FIA | 7 | 0.58 | 0.96 | 0.72 |
Luca et al. [ [40] ] | Inertial | FIA | 5 | 0.53 | 0.85 | 0.65 |
Van Elmpt et al. [ [41] ] | ECG | NS | 10 | 0.50 | 0.90 | 0.64 |
Milošević et al. [ [33] ] | Inertial | GTC | 7 | 0.48 | 0.82 | 0.61 |
Conradsen et al. [ [42] ] | sEMG | GTC | 11 | 0.41 | 1.00 | 0.58 |
Kusmakar et al. [ [43] ]
Detection of generalized tonic-clonic seizures using short length accelerometry signal. Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2017. 2017; : 4566-4569https://doi.org/10.1109/EMBC.2017.8037872 | Inertial | GTC | 12 | 0.41 | 0.95 | 0.57 |
Milošević et al. [ [33] ] | sEMG | GTC | 7 | 0.45 | 0.73 | 0.55 |
Osorio et al. [ [44] ] | ECG | NS | 81 | 0.38 | 0.86 | 0.53 |
Poh et al. [ [45] ] | Multimodal | GTC | 7 | 0.35 | 0.94 | 0.51 |
Nijsen et al. [ [35] ] | Inertial | Tonic | 18 | 0.35 | 0.83 | 0.49 |
Nijsen et al. [ [34] ] | Inertial | Myoclonic | 36 | 0.35 | 0.80 | 0.49 |
Bruijne et al. [ [46] ]
Detection of epileptic seizures through audio classification. 4th European conference of the international federation for medical and biological engineering. 2009; : 1450-1454https://doi.org/10.1007/978-3-540-89208-3_344 | Audio (Screams) | NS | 17 | 0.30 | 0.98 | 0.46 |
Dalton et al. [ [47] ] | Inertial | NS | 5 | 0.28 | 0.91 | 0.43 |
Beniczky et al. [ [48] ] | sEMG | GTC | 20 | 0.22 | 0.94 | 0.36 |
Gu et al. [ [49] ] | Wireless EEG | NS | 12 | 0.15 | 0.81 | 0.25 |
Vandecasteele et al. [ [50] ] | ECG | FIA | 11 | 0.02 | 0.70 | 0.04 |
Bruijne et al. [ [46] ]
Detection of epileptic seizures through audio classification. 4th European conference of the international federation for medical and biological engineering. 2009; : 1450-1454https://doi.org/10.1007/978-3-540-89208-3_344 | Audio (Lips) | NS | 17 | 0.02 | 0.98 | 0.04 |
Vandecasteele et al. [ [50] ] | PPG | FIA | 11 | 0.01 | 0.32 | 0.02 |
- Cogan D.
- Nourani M.
- Harvey J.
- Nagaraddi V.
- Kusmakar S.
- Muthuganapathy R.
- Yan B.
- O’Brien T.J.
- Palaniswami M.
- Ahmed A.
- Ahmad W.
- Khan M.J.
- Siddiqui S.A.
- Cheema H.M.
- Cogan D.
- Nourani M.
- Harvey J.
- Nagaraddi V.
- Kusmakar S.
- Muthuganapathy R.
- Yan B.
- O’Brien T.J.
- Palaniswami M.

4. Discussion
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
4.1 Evaluating SDD capabilities for measuring sample secondary endpoints

4.2 Shortcomings of device validation studies
4.2.1 Limited generalizability
- Cogan D.
- Nourani M.
- Harvey J.
- Nagaraddi V.
- Ahmed A.
- Ahmad W.
- Khan M.J.
- Siddiqui S.A.
- Cheema H.M.
- Cogan D.
- Nourani M.
- Harvey J.
- Nagaraddi V.
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
4.2.2 Limited outpatient testing
- Cuppens K.
- Lagae L.
- Ceulemans B.
- Huffel S.V.
- Vanrumste B.
4.2.3 Lack of secondary endpoint sensor validation
4.2.4 Incomplete experimental description
- Jeppesen J.
- Beniczky S.
- Fuglsang Frederiksen A.
- Sidenius P.
- Johansen P.
- Cogan D.
- Nourani M.
- Harvey J.
- Nagaraddi V.
4.2.5 Inconsistent statistics for reporting device performance
4.2.6 Lack of subclinical seizure reporting
4.3 Streamlining testing: a device validation framework

510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K172935 [Accessed 24 July 2018].
4.4 ASM clinical trial adoption: suggestions for device evaluation
4.4.1 Assessing the SDD regulatory landscape
4.4.2 Primary endpoint reporting evaluation
4.4.3 Secondary endpoint selection and reporting evaluation
4.4.4 Evaluating the logistics of device implementation
4.5 Additional clinical trial applications of SDDs
4.6 Future work
4.7 Limitations of this systematic review
5. Conclusion
Author contributions
Disclosure of conflicts of interest
Funding
Acknowledgment
References
- Bad information in epilepsy care.Epilepsy Behav E&B. 2017; 67: 133-134https://doi.org/10.1016/j.yebeh.2016.10.022
- Subjective seizure counts by epilepsy clinical drug trial participants are not reliable.Epilepsy Behav E&B. 2017; 67: 122-127https://doi.org/10.1016/j.yebeh.2016.10.036
- Issues in clinical trial design from the FDA perspective.Epilepsia. 2003; 44: 9-15https://doi.org/10.1046/j.1528-1157.44.s7.7.x
- Measuring outcomes of treatment with antiepileptic drugs in clinical trials.Epilepsy Behav E&B. 2010; 18: 24-30https://doi.org/10.1016/j.yebeh.2010.04.001
- Characteristics of large patient‐reported outcomes: where can one million seizures get us?.Epilepsia Open. 2018; 3: 364-373https://doi.org/10.1002/epi4.12237
- Epilepsy: accuracy of patient seizure counts.Arch Neurol. 2007; 64: 1595-1599https://doi.org/10.1001/archneur.64.11.1595
- Seizure detection and mobile health devices in epilepsy: update and future developments.Epilepsia. 2018; 59: 7-8https://doi.org/10.1111/epi.14088
510(k) Premarket Notification. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K172935 [Accessed 24 July 2018].
- Classification of the non-electroencephalogram physiological signal based seizure monitoring system.Fed. Regist. 2017; ([Accessed 24 July 2018])
- Electromyography-based seizure detector: preliminary results comparing a generalized tonic-clonic seizure detection algorithm to video-EEG recordings.Epilepsia. 2015; 56: 1432-1437https://doi.org/10.1111/epi.13083
- Improving convulsive seizure detection by exploiting data from outpatient settings using the Embrace wristband.([Accessed 25 April 2018])
- Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement.PLoS Med. 2009; 6: e1000097https://doi.org/10.1371/journal.pmed.1000097
- Evaluation: from precision, recall, and F-measure to TOC, informedness, markedness & correlation.J Mach Learn Technol. 2011; 2: 37-63https://doi.org/10.9735/2229-3981
- Seizure reporting technologies for epilepsy treatment: a review of clinical information needs and supporting technologies.Seizure. 2015; 32: 109-117https://doi.org/10.1016/j.seizure.2015.09.006
- Detection of paroxysms in long-term, single-channel EEG-monitoring of patients with typical absence seizures.IEEE J Transl Eng Health Med. 2017; 5: 2000108https://doi.org/10.1109/JTEHM.2017.2649491
- Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder.Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2017. 2017; : 4082-4085https://doi.org/10.1109/EMBC.2017.8037753
- An automatic prediction of epileptic seizures using cloud computing and wireless sensor networks.J Med Syst. 2016; 40: 226https://doi.org/10.1007/s10916-016-0579-1
- SmartWatch clinical study report.2013 ([Accessed 25 April 2018])
- Detection of generalized tonic–clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study.Epilepsia. 2013; 54: e58-e61https://doi.org/10.1111/epi.12120
- Detection of generalized tonic-clonic seizures using surface electromyographic monitoring.Epilepsia. 2017; 58: 1861-1869https://doi.org/10.1111/epi.13897
- Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database.Seizure. 2016; 39: 13-18https://doi.org/10.1016/j.seizure.2016.04.009
- Detection of seizure-like movements using a wrist accelerometer.Epilepsy Behav E&B. 2011; 20: 638-641https://doi.org/10.1016/j.yebeh.2011.01.019
- Prospective study of 2 bed alarms for detection of nocturnal seizures.J Child Neurol. 2013; 28: 1430-1433https://doi.org/10.1177/0883073812462064
- Detecting nocturnal convulsions: efficacy of the MP5 monitor.Seizure. 2009; 18: 225-227https://doi.org/10.1016/j.seizure.2008.08.007
- A novel portable seizure detection alarm system: preliminary results.J Clin Neurophysiol. 2011; 28: 36-38https://doi.org/10.1097/WNP.0b013e3182051320
- Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors.Epilepsia. 2017; 58: 1870-1879https://doi.org/10.1111/epi.13899
- Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions.Epilepsy Behav E&B. 2013; 28: 172-176https://doi.org/10.1016/j.yebeh.2013.04.017
- Epileptic seizure detection using wristworn biosensors.Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2015. 2015; : 5086-5089https://doi.org/10.1109/EMBC.2015.7319535
- Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor.2016 38th annu. int. conf. IEEE eng. med. biol. soc. EMBC 2016, IEEE, institute of electrical and electronics engineers. 2016; : 1006-1009https://doi.org/10.1109/EMBC.2016.7590872
- Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy – a comparison with scalp EEG monitoring.Clin Neurophysiol. 2017; 128: 2454-2461https://doi.org/10.1016/j.clinph.2017.09.115
- A wearable sensor based multi-criteria-decision-system for real-time seizure detection.Conf proc annu int conf IEEE eng med biol soc ieee eng med biol soc annu conf 2017. 2017; : 2377-2380https://doi.org/10.1109/EMBC.2017.8037334
- Detection of epileptic seizure using wireless sensor networks.J Med Signals Sens. 2013; 3 (10.24098859): 63-68
- Automated detection of tonic-clonic seizures using 3-D accelerometry and surface electromyography in pediatric patients.IEEE J Biomed Health Inform. 2016; 20: 1333-1341https://doi.org/10.1109/JBHI.2015.2462079
- Time-frequency analysis of accelerometry data for detection of myoclonic seizures.IEEE Trans Inf Technol Biomed. 2010; 14: 1197https://doi.org/10.1109/TITB.2010.2058123
- Automated detection of tonic seizures using 3-D accelerometry.4th European conference of the international federation for medical and biological engineering. 2009: 188-191 (10.1007%2F978-3-540-89208-3_47)
- Detection of subtle nocturnal motor activity from 3-D accelerometry recordings in epilepsy patients.IEEE Trans Biomed Eng. 2007; 54: 2073-2081https://doi.org/10.1109/TBME.2007.895114
- Accelerometry-based home monitoring for detection of nocturnal hypermotor seizures based on novelty detection.IEEE J Biomed Health Inform. 2014; 18: 1026-1033https://doi.org/10.1109/JBHI.2013.2285015
- Miniaturized wireless ECG monitor for real-time detection of epileptic seizures.ACM Trans Embed Comput Syst. 2013; 12 (1–102:21): 102https://doi.org/10.1145/2485984.2485990
- Long-term home monitoring of hypermotor seizures by patient-worn accelerometers.Epilepsy Behav E&B. 2013; 26: 118-125https://doi.org/10.1016/j.yebeh.2012.10.006
- Detecting rare events using extreme value statistics applied to epileptic convulsions in children.Artif Intell Med. 2014; 60: 89-96https://doi.org/10.1016/j.artmed.2013.11.007
- A model of heart rate changes to detect seizures in severe epilepsy.Seizure. 2006; 15: 366-375https://doi.org/10.1016/j.seizure.2006.03.005
- Automated algorithm for generalized tonic–clonic epileptic seizure onset detection based on sEMG zero-crossing rate.IEEE Trans Biomed Eng. 2012; 59: 579-585https://doi.org/10.1109/TBME.2011.2178094
- Detection of generalized tonic-clonic seizures using short length accelerometry signal.Conf proc annu int conf IEEE eng med biol soc IEEE eng med biol soc annu conf 2017. 2017; : 4566-4569https://doi.org/10.1109/EMBC.2017.8037872
- Is seizure detection based on EKG clinically relevant?.Clin Neurophysiol. 2014; 125: 1946-1951https://doi.org/10.1016/j.clinph.2014.01.026
- Convulsive seizure detection using a wrist-worn electrodermal activity and accelerometry biosensor.Epilepsia. 2012; 53: e93-e97https://doi.org/10.1111/j.1528-1167.2012.03444.x
- Detection of epileptic seizures through audio classification.4th European conference of the international federation for medical and biological engineering. 2009; : 1450-1454https://doi.org/10.1007/978-3-540-89208-3_344
- Development of a body sensor network to detect motor patterns of epileptic seizures.IEEE Trans Biomed Eng. 2012; 59: 3204-3211https://doi.org/10.1109/TBME.2012.2204990
- Automated real-time detection of tonic-clonic seizures using a wearable EMG device.Neurology. 2018; 90: e428-e434https://doi.org/10.1212/WNL.0000000000004893
- Comparison between scalp EEG and behind-the-ear EEG for development of a wearable seizure detection system for patients with focal epilepsy.Sensors. 2017; 18: 29https://doi.org/10.3390/s18010029
- Automated epileptic seizure detection based on wearable ECG and PPG in a hospital environment.Sensors. 2017; 17: 2338https://doi.org/10.3390/s17102338
- A trial of two fixed doses of ZX008 (Fenfluramine HCl) as an adjunctive therapy in children and young adults with dravet syndrome.2018 ([Accessed 25 April 2018])
- Fed bioequivalence study of CBZ formulations.2018 ([Accessed 20 July 2018])
- Efficacy of naloxone in reducing postictal central respiratory dysfunction in patients with epilepsy.2018 ([Accessed 20 July 2018])
- Safety, and tolerability of epidiolex in patients (ages 1–19 years) with intractable epilepsy.2018 ([Accessed 20 July 2018])
- Observational study on the effectiveness of new antiepileptic drugs as first bitherapy in the daily clinical practice.2018 ([Accessed 20 July 2018])
- A long-term extension study of E2007 in patients with refractory partial seizures uncontrolled with other anti-epileptic drugs (AEDs).2018 ([Accessed 20 July 2018])
- A study to assess the safety and efficacy of lacosamide versus placebo (a pill without active medication) in patients with idiopathic generalised epilepsy who are already taking anti-epileptic medications.2018 ([Accessed 20 July 2018])
- Adjunctive eslicarbazepine acetate: a pooled analysis of three phase III trials.Epilepsy Behav. 2017; 72: 127-134https://doi.org/10.1016/j.yebeh.2017.04.019
- Efficacy and safety of lacosamide as first add-on or later adjunctive treatment for uncontrolled partial-onset seizures: a multicentre open-label trial.Seizure. 2015; 31: 72-79https://doi.org/10.1016/j.seizure.2015.07.001
- Outpatient ambulatory EEG as an option for epilepsy surgery evaluation instead of inpatient EEG telemetry.Epilepsy Behav E&B Case Rep. 2013; 1: 39-41https://doi.org/10.1016/j.ebcr.2013.01.001
- Detection of nocturnal frontal lobe seizures in pediatric patients by means of accelerometers: a first study.2009 annu. int. conf. IEEE eng. med. biol. soc. 2009; : 6608-6611https://doi.org/10.1109/IEMBS.2009.5332557
- Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric.PLoS One. 2017; 12: e0177678https://doi.org/10.1371/journal.pone.0177678
- Index for rating diagnostic tests.Am Cancer Soc. 1949; 3: 32-35https://doi.org/10.1002/1097-0142
- Assess safety and efficacy of levetiracetam (LEV; Keppra) for seizure prevention.2019 ([Accessed 26 January 2019])
- Real-time non-EEG convulsive seizure detection devices: they work; now what?.Epilepsy Curr. 2018; 18: 164-166https://doi.org/10.5698/1535-7597.18.3.164
- Electroencephalography in the diagnosis of genetic generalized epilepsy syndromes.Front Neurol. 2017; 8: 499https://doi.org/10.3389/fneur.2017.00499
- Frequency of a false positive diagnosis of epilepsy: a systematic review of observational studies.Seizure. 2016; 41: 167-174https://doi.org/10.1016/j.seizure.2016.08.005
- The utility of prolonged outpatient ambulatory EEG.Seizure. 2012; 21: 491-495https://doi.org/10.1016/j.seizure.2012.04.015
- The utility of ambulatory electroencephalography in routine clinical practice: a critical review.Epilepsy Res. 2013; 105: 1-12https://doi.org/10.1016/j.eplepsyres.2013.02.004
- The role of outpatient ambulatory electroencephalography in the diagnosis and management of adults with epilepsy or nonepileptic attack disorder: a systematic literature review.Epilepsy Behav E&B. 2015; 53: 26-30https://doi.org/10.1016/j.yebeh.2015.09.032
- Standards for testing and clinical validation of seizure detection devices.Epilepsia. 2018; 59: 9-13https://doi.org/10.1111/epi.14049
- Non-EEG based ambulatory seizure detection designed for home use: what is available and how will it influence epilepsy care?.Epilepsy Behav E&B. 2016; 57: 82-89https://doi.org/10.1016/j.yebeh.2016.01.003
- Automated seizure detection systems and their effectiveness for each type of seizure.Seizure. 2016; 40: 88-101https://doi.org/10.1016/j.seizure.2016.06.008
- Safe and sound? A systematic literature review of seizure detection methods for personal use.Seizure. 2016; 36: 4-15https://doi.org/10.1016/j.seizure.2016.01.013
- Improving clinical trial efficiency: is technology the answer?.Epilepsia Open. 2017; 2: 121-122https://doi.org/10.1002/epi4.12042
- Seizure diaries for clinical research and practice: limitations and future prospects.Epilepsy Behav E&B. 2012; 24: 304-310https://doi.org/10.1016/j.yebeh.2012.04.128
- Patient-centered design criteria for wearable seizure detection devices.Epilepsy Behav E&B. 2016; 64: 116-121https://doi.org/10.1016/j.yebeh.2016.09.012
- Wearables in epilepsy and Parkinson’s disease-a focus group study.Acta Neurol Scand. 2018; 137: 188-194https://doi.org/10.1111/ane.12798
- Patient and caregiver view on seizure detection devices: a survey study.Seizure. 2016; 41: 179-181https://doi.org/10.1016/j.seizure.2016.08.004
- Clinically indicated electrical stimulation strategies to treat patients with medically refractory epilepsy.Epilepsia Open. 2018; 3: 198-209https://doi.org/10.1002/epi4.12276
- Therapeutic devices for epilepsy.Ann Neurol. 2012; 71: 157-168https://doi.org/10.1002/ana.22621
- Detecting PNES with single-channel sEMG.2019 ([Accessed 26 January 2019])
- Treatment outcomes of CBT for PNES.2019 ([Accessed 26 January 2019])
Article info
Publication history
Identification
Copyright
User license
Elsevier user license |
Permitted
For non-commercial purposes:
- Read, print & download
- Text & data mine
- Translate the article
Not Permitted
- Reuse portions or extracts from the article in other works
- Redistribute or republish the final article
- Sell or re-use for commercial purposes
Elsevier's open access license policy