Advertisement
Review| Volume 68, P46-51, May 2019

Imaging modalities to diagnose and localize status epilepticus

Open ArchivePublished:October 20, 2018DOI:https://doi.org/10.1016/j.seizure.2018.10.010

      Highlights

      • Neuroimaging is recommended for new onset SE.
      • MRI adds diagnostic yield for inflammation and remote injury.
      • MRI changes may include: increased T2/FLAIR signal and/or diffusion restriction.
      • There is increased cerebral perfusion during SE and decreased post-ictal.

      Abstract

      Neuroimaging, including computed tomography (CT) and magnetic resonance imaging (MRI) are frequently performed in patients who present with status epilepticus (SE). Here we discuss the role of these neuroimaging modalities in clinical evaluation and seizure localization. Additionally, translational neuroimaging research and advanced imaging technologies, such as perfusion and radionucleotide imaging may also contribute to localization of the seizure onset zone and yield opportunities to better understand the pathophysiology of SE and aid in prognostication.

      Keywords

      1. Introduction

      Status epilepticus (SE) is one of the most common neurologic emergencies with an overall incidence between 14-40/100,000 people per year [
      • Raspall-Chaure M.
      • Chin R.F.
      • Neville B.G.
      • Scott R.C.
      Outcome of paediatric convulsive status epilepticus: a systematic review.
      ,
      • Chin R.F.
      • Neville B.G.
      • Peckham C.
      • Bedford H.
      • Wade A.
      • Scott R.C.
      Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: prospective population-based study.
      ,
      • Hesdorffer D.C.
      • Logroscino G.
      • Cascino G.
      • Annegers J.F.
      • Hauser W.A.
      Incidence of status epilepticus in Rochester, Minnesota, 1965-1984.
      ,
      • Dham B.S.
      • Hunter K.
      • Rincon F.
      The epidemiology of status epilepticus in the United States.
      ,
      • DeLorenzo R.J.
      • Hauser W.A.
      • Towne A.R.
      • Boggs J.G.
      • Pellock J.M.
      • Penberthy L.
      • et al.
      A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia.
      ]. There is medical consensus that brain imaging is recommended for all children and adults with new onset localization related seizures or SE [
      • Neuroimaging C.O.
      Recommendations for neuroimaging of patients with epilepsy. Commission on neuroimaging of the international league against epilepsy.
      ,
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Gaillard W.D.
      • Chiron C.
      • Helen Cross J.
      • Simon Harvey A.
      • Kuzniecky R.
      • Hertz-Pannier L.
      • et al.
      Guidelines for imaging infants and children with recent-onset epilepsy.
      ,
      • Brophy G.M.
      • Bell R.
      • Claassen J.
      • Alldredge B.
      • Bleck T.P.
      • Glauser T.
      • et al.
      Guidelines for the evaluation and management of status epilepticus.
      ]. Computed tomography (CT) and magnetic resonance imaging (MRI) are the most commonly employed methods to evaluate patients with SE. The aim and utility of imaging studies in SE falls into four overlapping categories: diagnosis, localization, evaluating pathophysiology, and prognostication.
      In this review, we will discuss the role of neuroimaging following SE in children and adults. We will discuss the diagnostic yield of CT, typically performed in emergency settings, and MRI.
      Typical MRI findings will be reviewed as well as differences between focal and generalized SE. Additionally, localization of focal onset epilepsy is a critical element of diagnosis, management and prognostication. Improved resolution of traditional MRI sequences, as well as advanced MRI techniques and other modalities, are playing an increasing part in localization. Furthermore, advanced neuroimaging may add value to clinical and preclinical studies that seek to understand the pathophysiology of these conditions. Finally, we will review the evidence that neuroimaging may contribute to prognostication beyond identifying an underlying cause of SE.

      2. Clinical diagnosis

      The most critical role for neuroimaging in clinical practice is to aid in diagnosis and identifying the etiology of SE. Neuroimaging is recommended for all patients presenting with new onset status epilepticus and should be considered in those with known epilepsy with a first episode of SE [
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Gaillard W.D.
      • Chiron C.
      • Helen Cross J.
      • Simon Harvey A.
      • Kuzniecky R.
      • Hertz-Pannier L.
      • et al.
      Guidelines for imaging infants and children with recent-onset epilepsy.
      ,
      • Freilich E.R.
      • Schreiber J.M.
      • Zelleke T.
      • Gaillard W.D.
      Pediatric status epilepticus.
      ] (see Table 1). CT scans are the most readily available in emergency department setting and better than structural MRI at detecting blood. CT scans detect abnormalities in 15–33% patients [
      • Maytal J.
      • Krauss J.M.
      • Novak G.
      • Nagelberg J.
      • Patel M.
      The role of brain computed tomography in evaluating children with new onset of seizures in the emergency department.
      ,
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ,
      • Singh R.K.
      • Stephens S.
      • Berl M.M.
      • Chang T.
      • Brown K.
      • Vezina L.G.
      • et al.
      Prospective study of new-onset seizures presenting as status epilepticus in childhood.
      ]. This includes many acute symptomatic causes including hemorrhage, trauma, edema and mass lesions [
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ,
      • Earnest M.P.
      • Feldman H.
      • Marx J.A.
      • Harris J.A.
      • Biletch M.
      • Sullivan L.P.
      Intracranial lesions shown by CT scans in 259 cases of first alcohol-related seizures.
      ]. Combining CT and MRI there is a slightly higher diagnostic yield, identifying abnormalities in 30–36%. A large portion of this improvement is due to MRI being superior for detecting inflammatory changes or subtle, remote structural abnormalities [
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ,
      • Singh R.K.
      • Stephens S.
      • Berl M.M.
      • Chang T.
      • Brown K.
      • Vezina L.G.
      • et al.
      Prospective study of new-onset seizures presenting as status epilepticus in childhood.
      ]. One prospective study, combining CT and MRI identified CNS infections and cerebral dysgenesis as the most common acute and remote symptomatic causes of SE, respectively [
      • Singh R.K.
      • Stephens S.
      • Berl M.M.
      • Chang T.
      • Brown K.
      • Vezina L.G.
      • et al.
      Prospective study of new-onset seizures presenting as status epilepticus in childhood.
      ]. Additionally, obtaining a head CT or MRI may change management. Neuroimaging lead to urgent or emergent interventions in 8.5% of children with new onset SE, while 27% of those were identified by MRI only, including stroke, acute demyelinating encephalomyelitis (ADEM) and menigoencephalitis [
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ]. This data is similar to earlier studies in which neuroimaging identified an etiology for new onset epilepsy in 8–13% of patients [
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Berg A.T.
      • Testa F.M.
      • Levy S.R.
      • Shinnar S.
      Neuroimaging in children with newly diagnosed epilepsy: a community-based study.
      ] with the diagnostic yield increasing to 27.5% if the patient presented with status epilepticus [
      • Berg A.T.
      • Testa F.M.
      • Levy S.R.
      • Shinnar S.
      Neuroimaging in children with newly diagnosed epilepsy: a community-based study.
      ]. Acute management changes may be initiated following the discovery of acute symptomatic causes of SE, such as hemorrhage, neoplasm, and cerebral edema. Conversely, common remote symptomatic causes of epilepsy include longstanding structural abnormalities, such as neonatal or other remote brain injuries, and malformations of cortical development including focal cortical dysplasias (see Table 2).
      Table 1Indications for imaging and recommended MRI sequences for the evaluation of new onset seizures and status epilepticus. Abbreviations: 3D: 3-dimensions, FLAIR: fluid attenuated inversion recovery, DTI: diffusion tensor imaging.
      Indications for Imaging [
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Gaillard W.D.
      • Chiron C.
      • Helen Cross J.
      • Simon Harvey A.
      • Kuzniecky R.
      • Hertz-Pannier L.
      • et al.
      Guidelines for imaging infants and children with recent-onset epilepsy.
      ,
      • Brophy G.M.
      • Bell R.
      • Claassen J.
      • Alldredge B.
      • Bleck T.P.
      • Glauser T.
      • et al.
      Guidelines for the evaluation and management of status epilepticus.
      ]
      Modality
      Recommended:

      New onset status epilepticus
      MRI (highest diagnostic yield) or CT (most readily available)
      Consider:

      1. New onset status with known epilepsy

      2. Subsequent episodes of status with atypical presentation or new deficits
      Recommended MRI Sequences: [
      • Gaillard W.D.
      • Chiron C.
      • Helen Cross J.
      • Simon Harvey A.
      • Kuzniecky R.
      • Hertz-Pannier L.
      • et al.
      Guidelines for imaging infants and children with recent-onset epilepsy.
      ]
      T2 weighted sequences in 2 planes and for children < 24 months, 3 planes or 3D T2
      T1 weighted sequence in 3D, high resolution (1 mm3 isotropic voxels)
      FLAIR (axial and coronal)
      Fast spin echo 3 mm perpendicular to Hippocampal formation
      Diffusion weighted imaging (DWI) with DTI
      Susceptibility weighted imaging (SWI)
      Arterial spin labeling (ASL)
      T1 with contrast (if clinically indicated)
      Table 2Common structural etiologies identified on neuroimaging. Acute abnormalities frequently prompt a change in management or surgical intervention. Remote causes may be amenable to further characterization. Abbreviations: IPH: intraparenchymal hemorrhage, SAH: subarachnoid hemorrhage, SDH: subdural hemorrhage, EDH: epidural hemorrhage, TBI: traumatic brain injury, AVM: Arteriovenous malformation, HIE: hypoxic ischemic encephalopathy, TSC: tuberous sclerosis complex.
      Acute symptomatic:Remote symptomatic:
      Ischemic strokeNeonatal injury: stroke, HIE
      Hemorrhage: IPH, SAH, SDH, EDHOther remote injury, e.g. trauma, infection
      NeoplasmCortical dysplasia
      Cerebral edema: secondary to TBI or metabolic causeMalformation of cortical development: e.g. polymicrogyria, lissencephaly, heterotopias
      AVMOther Genetic causes: e.g. Sturge Weber, TSC
      The frequency of MRI abnormalities attributed to SE alone is around 11% [
      • Milligan T.A.
      • Zamani A.
      • Bromfield E.
      Frequency and patterns of MRI abnormalities due to status epilepticus.
      ], although the exact incidence remains unclear as many studies rely on case series or descriptive approaches. Furthermore, inflammatory, autoimmune, or parainfectious causes of SE are difficult to diagnose, as they may have MRI findings similar to those described with SE alone [
      • Gaspard N.
      • Foreman B.P.
      • Alvarez V.
      • Cabrera Kang C.
      • Probasco J.C.
      • Jongeling A.C.
      • et al.
      New-onset refractory status epilepticus.
      ,
      • Meletti S.
      • Giovannini G.
      • d’Orsi G.
      • Toran L.
      • Monti G.
      • Guha R.
      • et al.
      New-onset refractory status epilepticus with claustrum damage: definition of the clinical and neuroimaging features.
      ].
      MRI changes most commonly associated with SE are increased T2 or fluid-attenuated inversion recovery (FLAIR) signal and/or diffusion restriction. Diffusion weighted imaging (DWI) and the corresponding apparent diffusion coefficient (ADC) are imaging modalities that reveal local edema that may be induced by SE. Generalized tonic-clonic seizures may lead to decreased ADC values in cortical and/or subcortical regions. These changes are typically more focal, even when seizures are generalized and frequently correlate with T2 or FLAIR hyperintensities [
      • Canas N.
      • Breia P.
      • Soares P.
      • Saraiva P.
      • Calado S.
      • Jordão C.
      • et al.
      The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities.
      ,
      • Lansberg M.G.
      • O’Brien M.W.
      • Norbash A.M.
      • Moseley M.E.
      • Morrell M.
      • Albers G.W.
      MRI abnormalities associated with partial status epilepticus.
      ,
      • Kim J.A.
      • Chung J.I.
      • Yoon P.H.
      • Kim D.I.
      • Chung T.S.
      • Kim E.J.
      • et al.
      Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.
      ] (see Fig. 1). Typical subcortical brain regions affected are the basal ganglia, thalamus, particularly the pulvinar, hippocampi, and cerebellum [
      • Nakae Y.
      • Kudo Y.
      • Yamamoto R.
      • Dobashi Y.
      • Kawabata Y.
      • Ikeda S.
      • et al.
      Relationship between cortex and pulvinar abnormalities on diffusion-weighted imaging in status epilepticus.
      ,
      • Chatzikonstantinou A.
      • Gass A.
      • Förster A.
      • Hennerici M.G.
      • Szabo K.
      Features of acute DWI abnormalities related to status epilepticus.
      ,
      • Katramados A.M.
      • Burdette D.
      • Patel S.C.
      • Schultz L.R.
      • Gaddam S.
      • Mitsias P.D.
      Periictal diffusion abnormalities of the thalamus in partial status epilepticus.
      ,
      • Samaniego E.A.
      • Stuckert E.
      • Fischbein N.
      • Wijman C.A.C.
      Crossed cerebellar diaschisis in status epilepticus.
      ,
      • Massaro A.M.
      Teaching neuroimages:crossed cerebellar diaschisis in hemispheric status epilepticus.
      ]. Similarly, focal or unilateral SE, as well as lateralized periodic discharges detected by EEG are associated with focal diffusion restriction and increased T2 or FLAIR signal that may persists for days to weeks [
      • Gaxiola-Valdez I.
      • Singh S.
      • Perera T.
      • Sandy S.
      • Li E.
      • et al.
      Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI.
      ,
      • Huang Y.-C.
      • Weng H.-H.
      • Tsai Y.-T.
      • Huang Y.-C.
      • Hsiao M.-C.
      • Wu C.-Y.
      • et al.
      Periictal magnetic resonance imaging in status epilepticus.
      ].
      Fig. 1
      Fig. 1Common MRI findings due to status epilepticus. DWI (A) sequence reveals increased intensity in the left insular and frontal cortices (white arrows) with corresponding decreased apparent diffusion coefficient (ADC, B). There are similar regions of increased intensity on FLAIR imaging (C) and contrast enhancement (D) implying a component of vasogenic edema. These changes resolved on repeat MRI one week later.
      In studies and case reports where serial MRIs are performed, the majority of FLAIR and diffusion restriction abnormalities are reversible [
      • Canas N.
      • Breia P.
      • Soares P.
      • Saraiva P.
      • Calado S.
      • Jordão C.
      • et al.
      The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities.
      ,
      • Lansberg M.G.
      • O’Brien M.W.
      • Norbash A.M.
      • Moseley M.E.
      • Morrell M.
      • Albers G.W.
      MRI abnormalities associated with partial status epilepticus.
      ,
      • Kim J.A.
      • Chung J.I.
      • Yoon P.H.
      • Kim D.I.
      • Chung T.S.
      • Kim E.J.
      • et al.
      Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.
      ,
      • Huang Y.-C.
      • Weng H.-H.
      • Tsai Y.-T.
      • Huang Y.-C.
      • Hsiao M.-C.
      • Wu C.-Y.
      • et al.
      Periictal magnetic resonance imaging in status epilepticus.
      ], A minority of patients, particularly those with prolonged bouts of SE may develop permanent focal brain atrophy and cortical laminar necrosis [
      • Lansberg M.G.
      • O’Brien M.W.
      • Norbash A.M.
      • Moseley M.E.
      • Morrell M.
      • Albers G.W.
      MRI abnormalities associated with partial status epilepticus.
      ,
      • Kim J.A.
      • Chung J.I.
      • Yoon P.H.
      • Kim D.I.
      • Chung T.S.
      • Kim E.J.
      • et al.
      Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.
      ,
      • Huang Y.-C.
      • Weng H.-H.
      • Tsai Y.-T.
      • Huang Y.-C.
      • Hsiao M.-C.
      • Wu C.-Y.
      • et al.
      Periictal magnetic resonance imaging in status epilepticus.
      ,
      • Donaire A.
      Cortical laminar necrosis related to prolonged focal status epilepticus.
      ]. Serial MRIs have demonstrated hippocampal signal abnormalities following febrile SE that may be related to the development of hippocampal sclerosis [
      • Nohria V.
      • Lee N.
      • Tien R.D.
      • Heinz E.R.
      • Smith J.S.
      • DeLong G.R.
      • et al.
      Magnetic resonance imaging evidence of hippocampal sclerosis in progression: a case report.
      ,
      • Provenzale J.M.
      • Barboriak D.P.
      • VanLandingham K.
      • Macfall J.
      • Delong D.
      • Lewis D.V.
      Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis.
      ] and may be associated with developmental hippocampal abnormalities (discussed further below) [
      • Shinnar S.
      • Bello J.A.
      • Chan S.
      • Hesdorffer D.C.
      • Lewis D.V.
      • Macfall J.
      • et al.
      MRI abnormalities following febrile status epilepticus in children: the FEBSTAT study.
      ].
      Imaging studies of refractory SE requiring a continuous infusion, demonstrate similar patterns of changes with T2 hyperintensities seen in cortex and subcortical nuclei [
      • Sahin M.
      • Menache C.C.
      • Holmes G.L.
      • Riviello J.J.
      Outcome of severe refractory status epilepticus in children.
      ]. Case reports and small series of patients following refractory and super refractory status epilepticus, defined as seizures persisting 24 h after initiation of a continuous anesthetic infusion [
      • Shorvon S.
      • Ferlisi M.
      The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy.
      ,
      • Shorvon S.
      • Ferlisi M.
      The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol.
      ] demonstrate long standing changes on MRI. These changes include cerebral atrophy, cortical laminar necrosis and mesial temporal sclerosis [
      • Donaire A.
      Cortical laminar necrosis related to prolonged focal status epilepticus.
      ,
      • Doherty C.P.
      • Cole A.J.
      • Grant P.E.
      • Fischman A.
      • Dooling E.
      • Hoch D.B.
      • et al.
      Multimodal longitudinal imaging of focal status epilepticus.
      ,
      • Sirven J.I.
      • Zimmerman R.S.
      • Carter J.L.
      • Drazkowski J.F.
      • Larson J.S.
      MRI changes in status epilepticus.
      ,
      • Chevret L.
      • Husson B.
      • Nguefack S.
      • Nehlig A.
      • Bouilleret V.
      Prolonged refractory status epilepticus with early and persistent restricted hippocampal signal MRI abnormality.
      ,
      • Bauer G.
      • Gotwald T.
      • Dobesberger J.
      • Embacher N.
      • Felber S.
      • Bauer R.
      • et al.
      Transient and permanent magnetic resonance imaging abnormalities after complex partial status epilepticus.
      ]. Studies that correlate neuroimaging with pathologic findings have found widespread areas of abnormalities, including the cortex, thalamus and deep grey nuclei as well as hemispheric and crossed cerebellar atrophy [
      • Samaniego E.A.
      • Stuckert E.
      • Fischbein N.
      • Wijman C.A.C.
      Crossed cerebellar diaschisis in status epilepticus.
      ,
      • Massaro A.M.
      Teaching neuroimages:crossed cerebellar diaschisis in hemispheric status epilepticus.
      ,
      • Men S.
      • Lee D.H.
      • Barron J.R.
      • Muñoz D.G.
      Selective neuronal necrosis associated with status epilepticus: MR findings.
      ,
      • Nixon J.
      • Bateman D.
      • Moss T.
      An MRI and neuropathological study of a case of fatal status epilepticus.
      ,
      • Teixeira R.A.
      • Li L.M.
      • Santos S.L.M.
      • Zanardi V.A.
      • Guerreiro C.A.M.
      • Cendes F.
      Crossed cerebellar atrophy in patients with precocious destructive brain insults.
      ]. This atrophy may be secondary to energy failure from excitotoxicity or ischemia or a combination of these.

      3. Localization

      MRI and other imaging modalities frequently reveal focal abnormalities following SE. Seizure localization may even be appreciated in the setting of seemingly generalized seizures, which likely implies focal onset with secondary generalization. This lends itself to further reliance on neuroimaging as a tool to localize seizure onset. Improved seizure localization increases the number of therapeutic options, including surgery. Traditional MRI and more recently, high resolution epilepsy sequences may identify structural etiologies, including chronic lesions (e.g. remote stroke, calcified cysticercosis) and dysplasias [
      • Riviello J.J.
      • Ashwal S.
      • Hirtz D.
      • Glauser T.
      • Ballaban-Gil K.
      • et al.
      Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
      ,
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ,
      • Singh R.K.
      • Stephens S.
      • Berl M.M.
      • Chang T.
      • Brown K.
      • Vezina L.G.
      • et al.
      Prospective study of new-onset seizures presenting as status epilepticus in childhood.
      ]. Diffusion abnormalities are frequently ipsilateral to structural lesions [
      • Canas N.
      • Breia P.
      • Soares P.
      • Saraiva P.
      • Calado S.
      • Jordão C.
      • et al.
      The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities.
      ,
      • Chatzikonstantinou A.
      • Gass A.
      • Förster A.
      • Hennerici M.G.
      • Szabo K.
      Features of acute DWI abnormalities related to status epilepticus.
      ,
      • Katramados A.M.
      • Burdette D.
      • Patel S.C.
      • Schultz L.R.
      • Gaddam S.
      • Mitsias P.D.
      Periictal diffusion abnormalities of the thalamus in partial status epilepticus.
      ]. Finding concordance between MRI and focal EEG findings increases diagnostic yield [
      • Canas N.
      • Breia P.
      • Soares P.
      • Saraiva P.
      • Calado S.
      • Jordão C.
      • et al.
      The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities.
      ,
      • Rennebaum F.
      • Kassubek J.
      • Pinkhardt E.
      • Hübers A.
      • Ludolph A.C.
      • Schocke M.
      • et al.
      Status epilepticus: clinical characteristics and EEG patterns associated with and without MRI diffusion restriction in 69 patients.
      ].
      Beyond MR imaging, focal epilepsy is associated with perturbations in physiologic measures of brain function, especially metabolism and blood flow, which are typically tightly coupled and may be measured with radionucleotide imaging [
      • Gaillard W.D.
      • Fazilat S.
      • White S.
      • Malow B.
      • Sato S.
      • Reeves P.
      • et al.
      Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy.
      ]. Regional measures of metabolism may be ascertained by [
      • Meletti S.
      • Giovannini G.
      • d’Orsi G.
      • Toran L.
      • Monti G.
      • Guha R.
      • et al.
      New-onset refractory status epilepticus with claustrum damage: definition of the clinical and neuroimaging features.
      ] Fluorodeoxyglucose-positron emission tomography ([
      • Meletti S.
      • Giovannini G.
      • d’Orsi G.
      • Toran L.
      • Monti G.
      • Guha R.
      • et al.
      New-onset refractory status epilepticus with claustrum damage: definition of the clinical and neuroimaging features.
      ] FDG-PET) and measures of cerebral blood flow (CBF) by [99] ECD or HMPAO (hexamethylpropyleneamine oxime) single-photon emission computed tomography (SPECT). Similarly, advanced MR imaging techniques, such arterial spin labeling (ASL) may be beneficial in localizing a more discrete seizure onset [
      • Gaxiola-Valdez I.
      • Singh S.
      • Perera T.
      • Sandy S.
      • Li E.
      • et al.
      Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI.
      ]. ASL imaging is a form of MRI that utilizes a radiofrequency pulse to label arterial water allowing the ability to image cerebral blood flow, thus yielding an image with the intensity of the signal corresponding to local perfusion. These imaging techniques may provide value added in the interictal, ictal and post-ictal periods, particularly when comparing the regional metabolism and blood flow between these time points.
      In the interictal state the epileptogenic zone is invariably hypometabolic [
      • Theodore W.H.
      • Gaillard W.D.
      • Sato S.
      • Kufta C.
      • Leiderman D.
      Positron emission tomographic measurement of cerebral blood flow and temporal lobectomy.
      ], demonstrating diminished uptake of FDG and showing reduced blood flow [
      • Rowe C.C.
      • Berkovic S.F.
      • Sia S.T.B.
      • Austin M.
      • McKay W.J.
      • Kalnins R.M.
      • et al.
      Localization of epileptic foci with postictal single photon emission computed tomography.
      ]. Seizures have been long known to be associated with regional increases in cerebral blood to the origin of the ictal event or to regions representing propagation of ictal activity [
      • Harvey A.S.
      • Hopkins I.J.
      • SBowe J.M.
      • Cook D.J.
      • Shield L.K.
      • Berkovic S.F.
      Frontal lobe epilepsy: Clinical seizure characteristics and localization with ictal 99mTc-HMPAO SPECT.
      ,
      • Harvey A.S.
      • Bowe J.M.
      • Hopkins I.J.
      • Shield L.K.
      • Cook D.J.
      • Berkovic S.F.
      Ictal 99mTc-HMPAO single photon emission computed tomography in children with temporal lobe epilepsy.
      ,
      • Vera P.
      • Kaminska A.
      • Cieuta C.
      • Hollo A.
      • Stiévenart J.L.
      • Gardin I.
      • et al.
      Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children.
      ,
      • Kaminska A.
      • Chiron C.
      • Ville D.
      • Dellatolas G.
      • Hollo A.
      • Cieuta C.
      • et al.
      Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome.
      ,
      • O’Brien T.J.
      • So E.L.
      • Mullan B.P.
      • Hauser M.F.
      • Brinkmann B.H.
      • Bohnen N.I.
      • et al.
      Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus.
      ]. These observations are enhanced when interictal CBF is subtracted form an ictal study. After the ictal event CBF becomes reduced before normalizing [
      • Rowe C.C.
      • Berkovic S.F.
      • Austin M.C.
      • McKay W.J.
      • Bladin P.F.
      Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis.
      ,
      • Newton M.R.
      • Berkovic S.F.
      • Austin M.C.
      • Rowe C.C.
      • McKay W.J.
      • Bladin P.F.
      Postictal switch in blood flow distribution and temporal lobe seizures.
      ]. In the setting of prolonged seizures, or SE (where it is not practical to obtain an interictal study), SPECT studies in children and adults show increases in CBF that are generally confined to the seizure focus based on concomitant ictal EEG and MRI findings that may show underlying structural abnormalities [
      • Tatum W.O.
      • Alavi A.
      • Stecker M.M.
      Technetium-99m-HMPAO SPECT in partial status epilepticus.
      ,
      • Bhatia S.
      • Ahmad F.
      • Miller I.
      • Ragheb J.
      • Morrison G.
      • Jayakar P.
      • et al.
      Surgical treatment of refractory status epilepticus in children: clinical article.
      ]. Unlike in patients with brief seizures, CBF findings in SE may persist for more than 24 h [
      • Tatum W.O.
      • Alavi A.
      • Stecker M.M.
      Technetium-99m-HMPAO SPECT in partial status epilepticus.
      ] . Several case reports describe similar findings of increased CBF in complex partial SE [
      • Bauer J.
      • Stefan H.
      • Huk W.J.
      • Feistel H.
      • Hilz M.J.
      • Brinkmann H.G.
      • et al.
      CT, MRI and SPECT neuroimaging in status epilepticus with simple partial and complex partial seizures: case report.
      ,
      • Ali I.I.
      • Pirzada N.A.
      • Vaughn B.V.
      Periodic lateralized epileptiform discharges after complex partial status epilepticus associated with increased focal cerebral blood flow.
      ], epilepsia partialis continua [
      • Matthews R.
      • Franceschi D.
      • Xia W.
      • Cabahug C.
      • Schuman G.
      • Bernstein R.
      • et al.
      Parietal lobe epileptic focus identified on spect-mri fusion imaging in a case of epilepsia Partialis Continua.
      ,
      • Sztriha L.
      • Pávics L.
      • Ambrus E.
      Epilepsia partialis continua: follow-up with 99mTc-HMPAO-SPECT.
      ], non-convulsive status [
      • Ohe Y.
      • Hayashi T.
      • Deguchi I.
      • Fukuoka T.
      • Maruyama H.
      • Kato Y.
      • et al.
      A case of nonconvulsive status epilepticus with a reversible contralateral cerebellar lesion: temporal changes in magnetic resonance imaging and single-photon emission computed tomography finding.
      ,
      • Kutluay E.
      • Beattie J.
      • Passaro E.A.
      • Edwards J.C.
      • Minecan D.
      • Milling C.
      • et al.
      Diagnostic and localizing value of ictal SPECT in patients with nonconvulsive status epilepticus.
      ], and with lateralized periodic discharges (LPDs) [
      • Handforth A.
      • Cheng J.T.
      • Mandelkern M.A.
      • Treiman D.M.
      Markedly increased mesiotemporal lobe metabolism in a case with PLEDs: further evidence that PLEDs are a manifestation of partial status epilepticus.
      ,
      • Assal F.
      • Papazyan J.P.
      • Slosman D.O.
      • Jallon P.
      • Goerres G.W.
      SPECT in periodic lateralized epileptiform discharges (PLEDs): a form of partial status epilepticus?.
      ].
      Ictal FDG-PET studies are rare, however 6% of “interictal” FDG- PET studies show regional increases in metabolism [
      • Bansal L.
      • Miller I.
      • Hyslop A.
      • Bhatia S.
      • Duchowny M.
      • Jayakar P.
      PET hypermetabolism in medically resistant childhood epilepsy: Incidence, associations, and surgical outcome.
      ]. These observations are secondary to focal cortical dysplasias which exhibit evidence of continuous ictal activity during invasive EEG monitoring [
      • Bansal L.
      • Miller I.
      • Hyslop A.
      • Bhatia S.
      • Duchowny M.
      • Jayakar P.
      PET hypermetabolism in medically resistant childhood epilepsy: Incidence, associations, and surgical outcome.
      ]. FDG-PET performed in children and adults in status commonly show increased glucose ligand uptake that is concordant with the seizure focus [
      • Alexopoulos A.
      • Lachhwani D.K.
      • Gupta A.
      • Kotagal P.
      • Harrison A.M.
      • Bingaman W.
      • et al.
      Resective surgery to treat refractory status epilepticus in children with focal epileptogenesis.
      ,
      • Struck A.F.
      • Westover M.B.
      • Hall L.T.
      • Deck G.M.
      • Cole A.J.
      • Rosenthal E.S.
      Metabolic correlates of the Ictal-Interictal Continuum: FDG-PET during continuous EEG.
      ,
      • Siclari F.
      • Prior J.O.
      • Rossetti A.O.
      Ictal cerebral positron emission tomography (PET) in focal status epilepticus.
      ]. These observations have also been made in isolated case reports of refractory status epilepticus [
      • Bhatia S.
      • Ahmad F.
      • Miller I.
      • Ragheb J.
      • Morrison G.
      • Jayakar P.
      • et al.
      Surgical treatment of refractory status epilepticus in children: clinical article.
      ,
      • Nardetto L.
      • Zoccarato M.
      • Santelli L.
      • Tiberio I.
      • Cecchin D.
      • Giometto B.
      18F-FDG PET/MRI in cryptogenic new-onset refractory status epilepticus: a potential marker of disease location, activity and prognosis?.
      ,
      • Stayman A.
      • Abou-Khalil B.
      FDG-PET in the diagnosis of complex partial status epilepticus originating from the frontal lobe.
      ] and in PLDs [
      • Tatum W.O.
      • Stecker M.M.
      Serial FDG-PET scans in a patient with partial status epilepticus.
      ].
      A recent ASL study of 21 patients with epilepsy found that 71% of subjects had post-ictal hypoperfusion within 90 min following a seizure. Eighty percent of those with hypoperfusion had regional concordance with the suspected seizure onset zone [
      • Huang Y.-C.
      • Weng H.-H.
      • Tsai Y.-T.
      • Huang Y.-C.
      • Hsiao M.-C.
      • Wu C.-Y.
      • et al.
      Periictal magnetic resonance imaging in status epilepticus.
      ]. These findings recapitulate earlier studies by Rowe and colleagues who used SPECT to demonstrate that combining ictal and interictal studies of CBF yielded a correct localization in 72% of patients [
      • Rowe C.C.
      • Berkovic S.F.
      • Sia S.T.B.
      • Austin M.
      • McKay W.J.
      • Kalnins R.M.
      • et al.
      Localization of epileptic foci with postictal single photon emission computed tomography.
      ] and postictal SPECT correctly localized the correct temporal lobe in 97% of patients [
      • Rowe C.C.
      • Berkovic S.F.
      • Austin M.C.
      • McKay W.J.
      • Bladin P.F.
      Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis.
      ].

      4. Understanding pathophysiology

      Neuroimaging may provide an opportunity to investigate and elucidate the pathophysiology of SE and brain injury. SE results in both vasogenic and cytotoxic cerebral edema. Vasogenic edema occurs with blood brain barrier breakdown and results in T2 hyperintensity without diffusion restriction [
      • Schaefer P.W.
      • Buonanno F.S.
      • Gonzalez R.G.
      • Schwamm L.H.
      Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with Eclampsia.
      ,
      • Barzó P.
      • Marmarou A.
      • Fatouros P.
      • Hayasaki K.
      • Corwin F.
      Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging.
      ], as well as contrast enhancement (see Fig. 1). Conversely, cytotoxic edema describes the intracellular accumulation of fluid that occurs with a failure of cellular metabolism. Brain injury, such as ischemia, leads to ATP-dependent sodium/potassium (Na+/K+) membrane pump failure and is visualized as diffusion restriction on MRI [
      • Simard J.M.
      • Kent T.A.
      • Chen M.
      • Tarasov K.V.
      • Gerzanich V.
      Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications.
      ,
      • Stadnik T.W.
      • Demaerel P.
      • Luypaert R.R.
      • Chaskis C.
      • Van Rompaey K.L.
      • et al.
      Imaging tutorial: differential diagnosis of bright lesions on diffusion-weighted MR images.
      ].
      The timeline of cellular changes following seizure initiation has been studied extensively in animal models. These preclinical studies suggest a reduction in inhibitory signal and/or persistence of excitatory signal as the cause of prolonged seizures [
      • Goodkin H.P.
      • Joshi S.
      • Mtchedlishvili Z.
      • Brar J.
      • Kapur J.
      Subunit-specific trafficking of GABAA receptors during status Epilepticus.
      ,
      • Seinfeld S.
      • Goodkin H.P.
      • Shinnar S.
      Status Epilepticus.
      ,
      • Goodkin H.P.
      Status Epilepticus increases the intracellular accumulation of GABAA receptors.
      ,
      • Rajasekaran K.
      • Todorovic M.
      • Kapur J.
      Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus.
      ]. Excess glutamate and decreased gamma-amino butyric acid (GABA) tone leads to oxidative stress and perturbations in cellular metabolism [
      • Schubert D.
      • Piasecki D.
      Oxidative glutamate toxicity can be a component of the excitotoxicity cascade.
      ,
      • Murphy T.H.
      • Miyamoto M.
      • Sastre A.
      • Schnaar R.L.
      • Coyle J.T.
      Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.
      ,
      • Aoyama K.
      • Watabe M.
      • Nakaki T.
      Regulation of neuronal glutathione synthesis.
      ]. Mitochondrial injury and ultimately ATP-dependent Na+/K + pump failure leads to calcium ion influx and intracellular, cytotoxic edema [
      • Griffiths T.
      • Evans M.C.
      • Meldrum B.S.
      Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus.
      ,
      • Griffiths T.
      • Evans M.C.
      • Meldrum B.S.
      Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus.
      ]. Additionally, there is evidence for blood brain barrier breakdown leading to vasogenic edema in clinical and preclinical studies [
      • Yaffe K.
      • Ferriero D.
      • Barkovich A.J.
      • Rowley H.
      Reversible MRI abnormalities following seizures.
      ,
      • Hong K.-S.
      • Cho Y.-J.
      • Lee S.K.
      • Jeong S.-W.
      • Kim W.K.
      • Oh E.J.
      Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus.
      ,
      • Nitsch C.
      • Klatzo I.
      Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents.
      ,
      • Sammaritano M.
      • Andermann F.
      • Melanson D.
      • Pappius H.M.
      • Camfield P.
      • Aicardi J.
      • et al.
      Prolonged focal cerebral edema associated with partial status Epilepticus.
      ]. The etiology of seizure-induced injury is likely multifactorial, but the relative contributions of intrinsic neuronal factors versus global issues of cerebral perfusion and oxygen delivery remains an important topic of research with neuroimaging playing a key role.
      The relative contribution of and timing of these types edema in SE may play a role in understanding the pathophysiology and localization of seizure onset. In studies of super refractory SE, there is increased T2 signal without restricted diffusion, indicative of vasogenic edema [
      • Meletti S.
      • Giovannini G.
      • d’Orsi G.
      • Toran L.
      • Monti G.
      • Guha R.
      • et al.
      New-onset refractory status epilepticus with claustrum damage: definition of the clinical and neuroimaging features.
      ,
      • Sahin M.
      • Menache C.C.
      • Holmes G.L.
      • Riviello J.J.
      Outcome of severe refractory status epilepticus in children.
      ]. This may add evidence to the role of blood brain barrier breakdown and the immunopathophysiology that has been associated with many cases of super refractory SE. The resolution of similar MRI findings has been seen in more typical, non-super refractory cases of SE as well, again supporting the role of vasogenic edema [
      • Yaffe K.
      • Ferriero D.
      • Barkovich A.J.
      • Rowley H.
      Reversible MRI abnormalities following seizures.
      ,
      • Hong K.-S.
      • Cho Y.-J.
      • Lee S.K.
      • Jeong S.-W.
      • Kim W.K.
      • Oh E.J.
      Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus.
      ].
      Diffusion restriction that occurs following seizures may be related to postictal ischemia. This has been supported by animal models of SE. In these studies chemically induced seizures lead to an ADC decrease that peaked between 1–2 days after prolonged seizures, with resolution by day 7 [
      • Choy M.
      • Cheung K.K.
      • Thomas D.L.
      • Gadian D.G.
      • Lythgoe M.F.
      • Scott R.C.
      Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model.
      ,
      • Fabene P.F.
      • Marzola P.
      • Sbarbati A.
      • Bentivoglio M.
      Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage.
      ,
      • Wang Y.
      • Majors A.
      • Najm I.
      • Xue M.
      • Comair Y.
      • Modic M.
      • et al.
      Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by Kainic acid.
      ]. Several hypotheses have been proposed to explain pathophysiology of these imaging changes in the postictal state. These theories include decreased excitatory neurotransmitter availability or desensitization, a relative increase in inhibitory transmitters and receptors, and decreased cerebral blood flow [
      • Fisher R.S.
      • Schachter S.C.
      The postictal state: a neglected entity in the management of epilepsy.
      ,
      • Koepp M.J.
      • Diehl B.
      • Woermann F.G.
      Functional neuroimaging in the postictal state.
      ].
      In contrast, T2 hyperintensities that occur with diffusion restriction, indicative of cytotoxic edema, leave lasting changes on follow-up MRI [
      • Milligan T.A.
      • Zamani A.
      • Bromfield E.
      Frequency and patterns of MRI abnormalities due to status epilepticus.
      ,
      • Donaire A.
      Cortical laminar necrosis related to prolonged focal status epilepticus.
      ,
      • Doherty C.P.
      • Cole A.J.
      • Grant P.E.
      • Fischman A.
      • Dooling E.
      • Hoch D.B.
      • et al.
      Multimodal longitudinal imaging of focal status epilepticus.
      ,
      • Sirven J.I.
      • Zimmerman R.S.
      • Carter J.L.
      • Drazkowski J.F.
      • Larson J.S.
      MRI changes in status epilepticus.
      ]. Thus these imaging findings and the presence of cytotoxic edema may be a more ominous sign, implying longer lasting or permanent cellular injury (see Fig. 2).
      Fig. 2
      Fig. 2Timeline of imaging changes in status epilepticus. Imaging findings that may occur during and following SE include: 1. PET hypermetabolism and SPECT or ASL measured hyperperfusion while a seizure is ongoing; 2. an increase in diffusion restriction acutely, that remains elevated for 1–7 days following seizure and gradually decreases; 3. a gradual increase in FLAIR/T2 signal that rises through the post-ictal period and then, typically resolves over days to weeks. Note: timing of imaging changes and relative signal increases vary. PET = positron emission tomography, SPECT = single-photon emission computed tomography, ASL = arterial spin labeling, DWI = diffusion weighted imaging, FLAIR = fluid attenuated inversion recovery.
      There is the most evidence for alterations in cerebral perfusion during SE. These studies, utilizing, CT and MRI perfusion and more recently ASL imaging have demonstrated increased perfusion during SE and hypoperfusion in the post-ictal state [
      • Gaxiola-Valdez I.
      • Singh S.
      • Perera T.
      • Sandy S.
      • Li E.
      • et al.
      Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI.
      ,
      • Mathews M.S.
      • Smith W.S.
      • Wintermark M.
      • Dillon W.P.
      • Binder D.K.
      Local cortical hypoperfusion imaged with CT perfusion during postictal Todd’s paresis.
      ,
      • Rupprecht S.
      • Schwab M.
      • Fitzek C.
      • Witte O.W.
      • Terborg C.
      • Hagemann G.
      Hemispheric hypoperfusion in postictal paresis mimics early brain ischemia.
      ]. Perfusion based modalities may play a role in investigating the pathophysiology and the relative contribution of blood flow and oxygen delivery to cellular injury in SE and the post-ictal state (see Table 3).
      Table 3Summary of Imaging modalities, findings and interpretation during and following resolution of status epilepticus. Abbreviations: FLAIR: fluid-attenuated inversion recovery, DWI/ADC: diffusion weight imaging/apparent diffusion coefficient, CTP: computed tomography perfusion, SPECT: single-photon emission computed tomography, ASL: arterial spin labeling, PET: positron emission tomography.
      Imaging ModalityImaging FindingsInterpretation
      T2/FLAIR MRIIctal or Post-ictal: HyperintensityCytotoxic or vasogenic edema
      DWI/ADC MRIIctal: Diffusion restrictionCytotoxic edema
      Perfusion Imaging (e.g. CTP, SPECT, ASL)Ictal: Hyperperfusion

      Post-ictal: Hypoperfusion
      Changes in blood flow according to demand
      FDG-PETIctal: Hypermetabolism

      Interictal: Hypometabolism
      Changes in cellular metabolism during and following SE

      5. Prognosis

      Finally, neuroimaging has a place in prognostication following repeated seizures or SE. In SE, neuroimaging may play a prognostic role by helping identify the underlying etiology of the seizures and/or by understanding the relative contribution of the seizures themselves on neurologic outcome. Identifying an underlying structural cause of the SE has implications for acute management, mortality and neurologic outcomes, depending on the abnormality identified and its acuity [
      • Lyons T.W.
      • Johnson K.B.
      • Michelson K.A.
      • Nigrovic L.E.
      • Loddenkemper T.
      • Prabhu S.P.
      • et al.
      Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
      ,
      • Berg A.T.
      • Testa F.M.
      • Levy S.R.
      • Shinnar S.
      Neuroimaging in children with newly diagnosed epilepsy: a community-based study.
      ,
      • Alexopoulos A.
      • Lachhwani D.K.
      • Gupta A.
      • Kotagal P.
      • Harrison A.M.
      • Bingaman W.
      • et al.
      Resective surgery to treat refractory status epilepticus in children with focal epileptogenesis.
      ,
      • Neligan A.
      • Shorvon S.D.
      Frequency and prognosis of convulsive status epilepticus of different causes: a systematic review.
      ].
      To address the independent contribution of SE to neuroimaging findings and prognosis, prospective neuroimaging studies would be ideal. These are logistically challenging and it is rarely feasible to obtain baseline images on individuals before they present with SE. Clinical and preclinical studies have generally found transient signal changes on conventional MRI sequences [
      • Choy M.
      • Cheung K.K.
      • Thomas D.L.
      • Gadian D.G.
      • Lythgoe M.F.
      • Scott R.C.
      Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model.
      ,
      • Fabene P.F.
      • Marzola P.
      • Sbarbati A.
      • Bentivoglio M.
      Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage.
      ,
      • Wang Y.
      • Majors A.
      • Najm I.
      • Xue M.
      • Comair Y.
      • Modic M.
      • et al.
      Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by Kainic acid.
      ]. As an exception, some studies in animals and humans have identified longer lasting structural abnormalities in the setting of presumed cytotoxic edema with T2 hyperintensities and diffusion restriction. Volumetric analysis of the hippocampus 21 days after pilocarpine induced seizures in a rat model correlated with the degree of T2 and ADC change on day 2 following SE [
      • Choy M.
      • Cheung K.K.
      • Thomas D.L.
      • Gadian D.G.
      • Lythgoe M.F.
      • Scott R.C.
      Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model.
      ] . Similarly, increased T2 signal and diffusion restriction in humans may lead to permanent cellular injury based on the lasting changes visualized on follow-up MRI [
      • Milligan T.A.
      • Zamani A.
      • Bromfield E.
      Frequency and patterns of MRI abnormalities due to status epilepticus.
      ,
      • Donaire A.
      Cortical laminar necrosis related to prolonged focal status epilepticus.
      ,
      • Doherty C.P.
      • Cole A.J.
      • Grant P.E.
      • Fischman A.
      • Dooling E.
      • Hoch D.B.
      • et al.
      Multimodal longitudinal imaging of focal status epilepticus.
      ,
      • Chevret L.
      • Husson B.
      • Nguefack S.
      • Nehlig A.
      • Bouilleret V.
      Prolonged refractory status epilepticus with early and persistent restricted hippocampal signal MRI abnormality.
      ]. Thus, certain early MRI changes may predict decreased structural volumes later on.
      The role of SE in long term structural changes has been investigated the most with regards to the relationship between febrile SE and mesial temporal sclerosis (MTS) [
      • Nohria V.
      • Lee N.
      • Tien R.D.
      • Heinz E.R.
      • Smith J.S.
      • DeLong G.R.
      • et al.
      Magnetic resonance imaging evidence of hippocampal sclerosis in progression: a case report.
      ]. Serial MRIs of 11 toddlers presenting with febrile SE found 5 of them with evidence of hippocampal sclerosis when scanned an average of 9 months later [
      • Provenzale J.M.
      • Barboriak D.P.
      • VanLandingham K.
      • Macfall J.
      • Delong D.
      • Lewis D.V.
      Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis.
      ]. In addition, it was appreciated in a group of immunosuppressed patients that human herpesvirus 6 was associated with increased T2 signal and increased FDG-PET uptake in the hippocampus who had a clinical syndrome including epilepsy and follow-up MRI or autopsy in a subset revealed MTS [
      • Wainwright M.S.
      • Martin P.L.
      • Morse R.P.
      • Lacaze M.
      • Provenzale J.M.
      • Coleman R.E.
      • et al.
      Human herpesvirus 6 limbic encephalitis after stem cell transplantation.
      ]. Furthermore, longitudinal volumetric imaging has revealed hippocampal asymmetries months after febrile status epilepticus [
      • Scott R.C.
      Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study.
      ] and found a correlation between amygdala and hippocampal volumes with a history of prolonged febrile seizures in patients with existing temporal lobe epilepsy [
      • Cendes F.
      • Andermann F.
      • Dubeau F.
      • Gloor P.
      • Evans A.
      • et al.
      Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study.
      ].
      More recently, the Consequences of Prolonged Febrile Seizures in Childhood Study (FEBSTAT) a multicenter collaboration was developed to identify the relationship between febrile SE and subsequent MTS and temporal lobe epilepsy. This group sought to compare imaging findings of children with febrile SE with simple febrile seizures. They compared the brain MRIs of 199 children with febrile SE to 96 children with their first simple febrile seizure. The group identified more acute hippocampal abnormalities, including increased T2 signal in febrile SE compared with controls. Additionally, there were more developmental abnormalities of the hippocampus, including malrotation, occurring in 10.5% of SE patients versus 2.2% of controls. Extratemporal imaging abnormalities were not different between the two groups [
      • Shinnar S.
      • Bello J.A.
      • Chan S.
      • Hesdorffer D.C.
      • Lewis D.V.
      • Macfall J.
      • et al.
      MRI abnormalities following febrile status epilepticus in children: the FEBSTAT study.
      ]. With continued follow-up the FEBSTAT study will be able to further address the contribution of developmental and acute hippocampal abnormalities on subsequent evolution of hippocampal atrophy and on the development of temporal lobe epilepsy.

      6. Conclusion

      Neuroimaging is a critical component of the evaluation of status epilepticus. It provides diagnostic value in many cases and in some prompts emergent interventions that would not have been appreciated otherwise. Serial neuroimaging may allow for better assessments of brain injury over time and improve our understanding of the pathophysiology, including the timing and relative contributions of impairments in cellular metabolism, changes in cerebral blood flow and blood brain barrier breakdown. With better understanding of the underlying process we gain insights into the pathogenesis of SE in different disease states while also aiding in targeted interventions and prognostication. Finally, of equal importance is the ability of MRI and other advanced imaging techniques to provide seizure onset localization that is the first step in consideration for surgical approaches to treat underlying epilepsy and in rare cases persistent status.
      Existing recommendations on the indications and timing for neuroimaging in SE rely heavily on expert opinion. We have described here data supporting the diagnostic value of neuroimaging that has established it as a standard of care in new onset SE. However, knowledge gaps remain. The impact of neuroimaging findings on the type and escalation of anti-epileptic therapies has not been described. Additionally, there is limited prospective data about the prognostic value of neuroimaging, which is in part related to the heterogeneity of etiologies. Further investigation of SE based on etiology and neuroimaging findings may facilitate future targeted therapies and a better understanding of prognosis. The FEBSTAT study is an important step forward to fill this void.

      Disclosures

      RMG and WDG: Have no relevant disclosures.

      References

        • Raspall-Chaure M.
        • Chin R.F.
        • Neville B.G.
        • Scott R.C.
        Outcome of paediatric convulsive status epilepticus: a systematic review.
        Lancet Neurol. 2006; 5: 769-779
        • Chin R.F.
        • Neville B.G.
        • Peckham C.
        • Bedford H.
        • Wade A.
        • Scott R.C.
        Incidence, cause, and short-term outcome of convulsive status epilepticus in childhood: prospective population-based study.
        Neurology. 2006; 368: 222-229
        • Hesdorffer D.C.
        • Logroscino G.
        • Cascino G.
        • Annegers J.F.
        • Hauser W.A.
        Incidence of status epilepticus in Rochester, Minnesota, 1965-1984.
        Neurology. 1998; 50: 735-741
        • Dham B.S.
        • Hunter K.
        • Rincon F.
        The epidemiology of status epilepticus in the United States.
        Neurocrit Care. 2014; 20 (Springer US): 476-483
        • DeLorenzo R.J.
        • Hauser W.A.
        • Towne A.R.
        • Boggs J.G.
        • Pellock J.M.
        • Penberthy L.
        • et al.
        A prospective, population-based epidemiologic study of status epilepticus in Richmond, Virginia.
        Neurology. 1996; 46: 1029-1035
        • Neuroimaging C.O.
        Recommendations for neuroimaging of patients with epilepsy. Commission on neuroimaging of the international league against epilepsy.
        Epilepsia. 1997; 38: 1255-1256
        • Riviello J.J.
        • Ashwal S.
        • Hirtz D.
        • Glauser T.
        • Ballaban-Gil K.
        • et al.
        Practice parameter: diagnostic assessment of the child with status epilepticus (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society.
        Neurology. 2006; 67 (Lippincott Williams & Wilkins): 1542-1550
        • Gaillard W.D.
        • Chiron C.
        • Helen Cross J.
        • Simon Harvey A.
        • Kuzniecky R.
        • Hertz-Pannier L.
        • et al.
        Guidelines for imaging infants and children with recent-onset epilepsy.
        Epilepsia. 2009; 50: 2147-2153
        • Brophy G.M.
        • Bell R.
        • Claassen J.
        • Alldredge B.
        • Bleck T.P.
        • Glauser T.
        • et al.
        Guidelines for the evaluation and management of status epilepticus.
        2012: 3-23
        • Freilich E.R.
        • Schreiber J.M.
        • Zelleke T.
        • Gaillard W.D.
        Pediatric status epilepticus.
        Curr Opin Pediatr. 2014; 26: 655-661
        • Maytal J.
        • Krauss J.M.
        • Novak G.
        • Nagelberg J.
        • Patel M.
        The role of brain computed tomography in evaluating children with new onset of seizures in the emergency department.
        epilepsia. 2000; 41: 950-954
        • Lyons T.W.
        • Johnson K.B.
        • Michelson K.A.
        • Nigrovic L.E.
        • Loddenkemper T.
        • Prabhu S.P.
        • et al.
        Yield of emergent neuroimaging in children with new-onset seizure and status epilepticus.
        Seizure: Eur J Epilepsy. 2016; 1 (BEA Trading Ltd): 4-10
        • Singh R.K.
        • Stephens S.
        • Berl M.M.
        • Chang T.
        • Brown K.
        • Vezina L.G.
        • et al.
        Prospective study of new-onset seizures presenting as status epilepticus in childhood.
        Neurology. 2010; 23;74 (Lippincott Williams & Wilkins): 636-642
        • Earnest M.P.
        • Feldman H.
        • Marx J.A.
        • Harris J.A.
        • Biletch M.
        • Sullivan L.P.
        Intracranial lesions shown by CT scans in 259 cases of first alcohol-related seizures.
        Neurology. 1988; 38: 1561-1565
        • Berg A.T.
        • Testa F.M.
        • Levy S.R.
        • Shinnar S.
        Neuroimaging in children with newly diagnosed epilepsy: a community-based study.
        Pediatrics. 2000; 106: 527-532
        • Milligan T.A.
        • Zamani A.
        • Bromfield E.
        Frequency and patterns of MRI abnormalities due to status epilepticus.
        Seizure. 2009; 18: 104-108
        • Gaspard N.
        • Foreman B.P.
        • Alvarez V.
        • Cabrera Kang C.
        • Probasco J.C.
        • Jongeling A.C.
        • et al.
        New-onset refractory status epilepticus.
        Neurology. 2015; 2;85: 1604-1613
        • Meletti S.
        • Giovannini G.
        • d’Orsi G.
        • Toran L.
        • Monti G.
        • Guha R.
        • et al.
        New-onset refractory status epilepticus with claustrum damage: definition of the clinical and neuroimaging features.
        Front Neurol. 2017; 27;8: 735-739
        • Canas N.
        • Breia P.
        • Soares P.
        • Saraiva P.
        • Calado S.
        • Jordão C.
        • et al.
        The electroclinical-imagiological spectrum and long-term outcome of transient periictal MRI abnormalities.
        Epilepsy Res. Elsevier B.V. 2010; 1;91: 240-252
        • Lansberg M.G.
        • O’Brien M.W.
        • Norbash A.M.
        • Moseley M.E.
        • Morrell M.
        • Albers G.W.
        MRI abnormalities associated with partial status epilepticus.
        Neurology. 1999; 23;52: 1021-1027
        • Kim J.A.
        • Chung J.I.
        • Yoon P.H.
        • Kim D.I.
        • Chung T.S.
        • Kim E.J.
        • et al.
        Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging.
        AJNR Am J Neuroradiol. 2001; 22: 1149-1160
        • Nakae Y.
        • Kudo Y.
        • Yamamoto R.
        • Dobashi Y.
        • Kawabata Y.
        • Ikeda S.
        • et al.
        Relationship between cortex and pulvinar abnormalities on diffusion-weighted imaging in status epilepticus.
        J Neurol. 2015; 31;263 (Springer Berlin Heidelberg): 127-132
        • Chatzikonstantinou A.
        • Gass A.
        • Förster A.
        • Hennerici M.G.
        • Szabo K.
        Features of acute DWI abnormalities related to status epilepticus.
        Epilepsy Res Elsevier B.V. 2011; 1;97: 45-51
        • Katramados A.M.
        • Burdette D.
        • Patel S.C.
        • Schultz L.R.
        • Gaddam S.
        • Mitsias P.D.
        Periictal diffusion abnormalities of the thalamus in partial status epilepticus.
        Epilepsia. 2009; 27;50: 265-275
        • Samaniego E.A.
        • Stuckert E.
        • Fischbein N.
        • Wijman C.A.C.
        Crossed cerebellar diaschisis in status epilepticus.
        Neurocrit Care. 2009; 5;12: 88-90
        • Massaro A.M.
        Teaching neuroimages:crossed cerebellar diaschisis in hemispheric status epilepticus.
        Neurol Am Acad Neurol. 2012; 13;79 (e182–2)
        • Gaxiola-Valdez I.
        • Singh S.
        • Perera T.
        • Sandy S.
        • Li E.
        • et al.
        Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI.
        Brain. 2017; 28;140: 2895-2911
        • Huang Y.-C.
        • Weng H.-H.
        • Tsai Y.-T.
        • Huang Y.-C.
        • Hsiao M.-C.
        • Wu C.-Y.
        • et al.
        Periictal magnetic resonance imaging in status epilepticus.
        Epilepsy Res. 2009; 86: 72-81
        • Donaire A.
        Cortical laminar necrosis related to prolonged focal status epilepticus.
        J Neurol Neurosurg Psychiatr. 2006; 1;77: 104-106
        • Nohria V.
        • Lee N.
        • Tien R.D.
        • Heinz E.R.
        • Smith J.S.
        • DeLong G.R.
        • et al.
        Magnetic resonance imaging evidence of hippocampal sclerosis in progression: a case report.
        Epilepsia. 1994; 35: 1332-1336
        • Provenzale J.M.
        • Barboriak D.P.
        • VanLandingham K.
        • Macfall J.
        • Delong D.
        • Lewis D.V.
        Hippocampal MRI signal hyperintensity after febrile status epilepticus is predictive of subsequent mesial temporal sclerosis.
        AJR Am J Roentgenol. 2008; 190: 976-983
        • Shinnar S.
        • Bello J.A.
        • Chan S.
        • Hesdorffer D.C.
        • Lewis D.V.
        • Macfall J.
        • et al.
        MRI abnormalities following febrile status epilepticus in children: the FEBSTAT study.
        Neurology. 2012; 28;79: 871-877
        • Sahin M.
        • Menache C.C.
        • Holmes G.L.
        • Riviello J.J.
        Outcome of severe refractory status epilepticus in children.
        Epilepsia. 2001; 42: 1461-1467
        • Shorvon S.
        • Ferlisi M.
        The outcome of therapies in refractory and super-refractory convulsive status epilepticus and recommendations for therapy.
        Brain. 2012; 28;135: 2314-2328
        • Shorvon S.
        • Ferlisi M.
        The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol.
        Brain. 2011; 5;134: 2802-2818
        • Doherty C.P.
        • Cole A.J.
        • Grant P.E.
        • Fischman A.
        • Dooling E.
        • Hoch D.B.
        • et al.
        Multimodal longitudinal imaging of focal status epilepticus.
        Can J Neurol Sci. 2016; 16;31 (Cambridge University Press): 276-281
        • Sirven J.I.
        • Zimmerman R.S.
        • Carter J.L.
        • Drazkowski J.F.
        • Larson J.S.
        MRI changes in status epilepticus.
        Neurology. 2003; 10;60: 1866
        • Chevret L.
        • Husson B.
        • Nguefack S.
        • Nehlig A.
        • Bouilleret V.
        Prolonged refractory status epilepticus with early and persistent restricted hippocampal signal MRI abnormality.
        J Neurol. 2008; 22;255: 112-116
        • Bauer G.
        • Gotwald T.
        • Dobesberger J.
        • Embacher N.
        • Felber S.
        • Bauer R.
        • et al.
        Transient and permanent magnetic resonance imaging abnormalities after complex partial status epilepticus.
        Epilepsy Behav. 2006; 8: 666-671
        • Men S.
        • Lee D.H.
        • Barron J.R.
        • Muñoz D.G.
        Selective neuronal necrosis associated with status epilepticus: MR findings.
        AJNR Am J Neuroradiol. 2000; 21: 1837-1840
        • Nixon J.
        • Bateman D.
        • Moss T.
        An MRI and neuropathological study of a case of fatal status epilepticus.
        Seizure. 2001; 10: 588-591
        • Teixeira R.A.
        • Li L.M.
        • Santos S.L.M.
        • Zanardi V.A.
        • Guerreiro C.A.M.
        • Cendes F.
        Crossed cerebellar atrophy in patients with precocious destructive brain insults.
        Arch Neurol. 2002; 59: 843-847
        • Rennebaum F.
        • Kassubek J.
        • Pinkhardt E.
        • Hübers A.
        • Ludolph A.C.
        • Schocke M.
        • et al.
        Status epilepticus: clinical characteristics and EEG patterns associated with and without MRI diffusion restriction in 69 patients.
        Epilepsy Res. Elsevier B.V. 2016; 1: 55-64
        • Gaillard W.D.
        • Fazilat S.
        • White S.
        • Malow B.
        • Sato S.
        • Reeves P.
        • et al.
        Interictal metabolism and blood flow are uncoupled in temporal lobe cortex of patients with complex partial epilepsy.
        Neurol Am Acad Neurol. 1995; 1;45: 1841-1847
        • Theodore W.H.
        • Gaillard W.D.
        • Sato S.
        • Kufta C.
        • Leiderman D.
        Positron emission tomographic measurement of cerebral blood flow and temporal lobectomy.
        Ann Neurol. 1994; 36 (Wiley Subscription Services, Inc., A Wiley Company): 241-244
        • Rowe C.C.
        • Berkovic S.F.
        • Sia S.T.B.
        • Austin M.
        • McKay W.J.
        • Kalnins R.M.
        • et al.
        Localization of epileptic foci with postictal single photon emission computed tomography.
        Ann Neurol. 1989; 26 (Wiley Subscription Services, Inc., A Wiley Company): 660-668
        • Harvey A.S.
        • Hopkins I.J.
        • SBowe J.M.
        • Cook D.J.
        • Shield L.K.
        • Berkovic S.F.
        Frontal lobe epilepsy: Clinical seizure characteristics and localization with ictal 99mTc-HMPAO SPECT.
        Neurol Am Acad Neurol. 1993; 1;43 (1966–6)
        • Harvey A.S.
        • Bowe J.M.
        • Hopkins I.J.
        • Shield L.K.
        • Cook D.J.
        • Berkovic S.F.
        Ictal 99mTc-HMPAO single photon emission computed tomography in children with temporal lobe epilepsy.
        Epilepsia. 1993; 34 (Blackwell Publishing Ltd): 869-877
        • Vera P.
        • Kaminska A.
        • Cieuta C.
        • Hollo A.
        • Stiévenart J.L.
        • Gardin I.
        • et al.
        Use of subtraction ictal SPECT co-registered to MRI for optimizing the localization of seizure foci in children.
        J Nucl Med. 1999; 40: 786-792
        • Kaminska A.
        • Chiron C.
        • Ville D.
        • Dellatolas G.
        • Hollo A.
        • Cieuta C.
        • et al.
        Ictal SPECT in children with epilepsy: comparison with intracranial EEG and relation to postsurgical outcome.
        Brain. 2003; 1;126: 248-260
        • O’Brien T.J.
        • So E.L.
        • Mullan B.P.
        • Hauser M.F.
        • Brinkmann B.H.
        • Bohnen N.I.
        • et al.
        Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus.
        Neurol Am Acad Neurol. 1998; 1;50: 445-454
        • Rowe C.C.
        • Berkovic S.F.
        • Austin M.C.
        • McKay W.J.
        • Bladin P.F.
        Patterns of postictal cerebral blood flow in temporal lobe epilepsy: qualitative and quantitative analysis.
        Neurology. 1991; 41: 1096-1103
        • Newton M.R.
        • Berkovic S.F.
        • Austin M.C.
        • Rowe C.C.
        • McKay W.J.
        • Bladin P.F.
        Postictal switch in blood flow distribution and temporal lobe seizures.
        J Neurol Neurosurg Psychiatry. 1992; 1;55 (BMJ Publishing Group Ltd): 891-894
        • Tatum W.O.
        • Alavi A.
        • Stecker M.M.
        Technetium-99m-HMPAO SPECT in partial status epilepticus.
        J Nucl Med. 1994; 35: 1087-1094
        • Bhatia S.
        • Ahmad F.
        • Miller I.
        • Ragheb J.
        • Morrison G.
        • Jayakar P.
        • et al.
        Surgical treatment of refractory status epilepticus in children: clinical article.
        J Neurosurg Pediatr. 2013; 12: 360-366
        • Bauer J.
        • Stefan H.
        • Huk W.J.
        • Feistel H.
        • Hilz M.J.
        • Brinkmann H.G.
        • et al.
        CT, MRI and SPECT neuroimaging in status epilepticus with simple partial and complex partial seizures: case report.
        J Neurol. 1989; 236 (Springer-Verlag): 296-299
        • Ali I.I.
        • Pirzada N.A.
        • Vaughn B.V.
        Periodic lateralized epileptiform discharges after complex partial status epilepticus associated with increased focal cerebral blood flow.
        J Clin Neurophysiol. 2001; 18: 565-569
        • Matthews R.
        • Franceschi D.
        • Xia W.
        • Cabahug C.
        • Schuman G.
        • Bernstein R.
        • et al.
        Parietal lobe epileptic focus identified on spect-mri fusion imaging in a case of epilepsia Partialis Continua.
        Clin Nucl Med. 2006; 31: 826-828
        • Sztriha L.
        • Pávics L.
        • Ambrus E.
        Epilepsia partialis continua: follow-up with 99mTc-HMPAO-SPECT.
        Neuropediatrics. 1994; 25 (© Georg Thieme Verlag KG Stuttgart·New York): 250-254
        • Ohe Y.
        • Hayashi T.
        • Deguchi I.
        • Fukuoka T.
        • Maruyama H.
        • Kato Y.
        • et al.
        A case of nonconvulsive status epilepticus with a reversible contralateral cerebellar lesion: temporal changes in magnetic resonance imaging and single-photon emission computed tomography finding.
        J Stroke Cerebrovasc Dis. 2013; 22 (e639–42)
        • Kutluay E.
        • Beattie J.
        • Passaro E.A.
        • Edwards J.C.
        • Minecan D.
        • Milling C.
        • et al.
        Diagnostic and localizing value of ictal SPECT in patients with nonconvulsive status epilepticus.
        Epilepsy Behav. 2005; 6: 212-217
        • Handforth A.
        • Cheng J.T.
        • Mandelkern M.A.
        • Treiman D.M.
        Markedly increased mesiotemporal lobe metabolism in a case with PLEDs: further evidence that PLEDs are a manifestation of partial status epilepticus.
        Epilepsia. 1994; 35: 876-881
        • Assal F.
        • Papazyan J.P.
        • Slosman D.O.
        • Jallon P.
        • Goerres G.W.
        SPECT in periodic lateralized epileptiform discharges (PLEDs): a form of partial status epilepticus?.
        Seizure. 2001; 10: 260-264
        • Bansal L.
        • Miller I.
        • Hyslop A.
        • Bhatia S.
        • Duchowny M.
        • Jayakar P.
        PET hypermetabolism in medically resistant childhood epilepsy: Incidence, associations, and surgical outcome.
        Epilepsia. 2016; 18;57: 436-444
        • Alexopoulos A.
        • Lachhwani D.K.
        • Gupta A.
        • Kotagal P.
        • Harrison A.M.
        • Bingaman W.
        • et al.
        Resective surgery to treat refractory status epilepticus in children with focal epileptogenesis.
        Neurol Am Acad Neurol. 2005; 8;64: 567-570
        • Struck A.F.
        • Westover M.B.
        • Hall L.T.
        • Deck G.M.
        • Cole A.J.
        • Rosenthal E.S.
        Metabolic correlates of the Ictal-Interictal Continuum: FDG-PET during continuous EEG.
        Neurocrit Care. 2016; 11;24 (Springer US): 324-331
        • Siclari F.
        • Prior J.O.
        • Rossetti A.O.
        Ictal cerebral positron emission tomography (PET) in focal status epilepticus.
        Epilepsy Res. 2013; 105: 356-361
        • Nardetto L.
        • Zoccarato M.
        • Santelli L.
        • Tiberio I.
        • Cecchin D.
        • Giometto B.
        18F-FDG PET/MRI in cryptogenic new-onset refractory status epilepticus: a potential marker of disease location, activity and prognosis?.
        J Neurol Sci. 2017; 15: 100-102
        • Stayman A.
        • Abou-Khalil B.
        FDG-PET in the diagnosis of complex partial status epilepticus originating from the frontal lobe.
        Epilepsy Behav. 2011; 20: 721-724
        • Tatum W.O.
        • Stecker M.M.
        Serial FDG-PET scans in a patient with partial status epilepticus.
        Epilepsia. 1995; 36: 214-215
        • Schaefer P.W.
        • Buonanno F.S.
        • Gonzalez R.G.
        • Schwamm L.H.
        Diffusion-weighted imaging discriminates between cytotoxic and vasogenic edema in a patient with Eclampsia.
        Stroke. 1997; 1;28: 1082-1085
        • Barzó P.
        • Marmarou A.
        • Fatouros P.
        • Hayasaki K.
        • Corwin F.
        Contribution of vasogenic and cellular edema to traumatic brain swelling measured by diffusion-weighted imaging.
        J Neurosurg. 1997; 87: 900-907
        • Simard J.M.
        • Kent T.A.
        • Chen M.
        • Tarasov K.V.
        • Gerzanich V.
        Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications.
        Lancet Neurol. 2007; 6: 258-268
        • Stadnik T.W.
        • Demaerel P.
        • Luypaert R.R.
        • Chaskis C.
        • Van Rompaey K.L.
        • et al.
        Imaging tutorial: differential diagnosis of bright lesions on diffusion-weighted MR images.
        Radiographics. 2003; 23 (e7–e7)
        • Goodkin H.P.
        • Joshi S.
        • Mtchedlishvili Z.
        • Brar J.
        • Kapur J.
        Subunit-specific trafficking of GABAA receptors during status Epilepticus.
        J Neurosci. 2008; 5;28: 2527-2538
        • Seinfeld S.
        • Goodkin H.P.
        • Shinnar S.
        Status Epilepticus.
        Cold Spring Harb Perspect Med. 2016; 1;6 (a022830–13)
        • Goodkin H.P.
        Status Epilepticus increases the intracellular accumulation of GABAA receptors.
        J Neurosci Soc Neurosci. 2005; 8;25: 5511-5520
        • Rajasekaran K.
        • Todorovic M.
        • Kapur J.
        Calcium-permeable AMPA receptors are expressed in a rodent model of status epilepticus.
        Ann Neurol. 2012; 23;72 (Wiley Subscription Services, Inc., A Wiley Company): 91-102
        • Schubert D.
        • Piasecki D.
        Oxidative glutamate toxicity can be a component of the excitotoxicity cascade.
        J Neurosci. 2001; 1;21: 7455-7462
        • Murphy T.H.
        • Miyamoto M.
        • Sastre A.
        • Schnaar R.L.
        • Coyle J.T.
        Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress.
        Neuron. 1989; 2: 1547-1558
        • Aoyama K.
        • Watabe M.
        • Nakaki T.
        Regulation of neuronal glutathione synthesis.
        J Pharmacol Sci. 2008; 108: 227-238
        • Griffiths T.
        • Evans M.C.
        • Meldrum B.S.
        Intracellular sites of early calcium accumulation in the rat hippocampus during status epilepticus.
        Neurosci Lett. 1982; 30;30: 329-334
        • Griffiths T.
        • Evans M.C.
        • Meldrum B.S.
        Status epilepticus: the reversibility of calcium loading and acute neuronal pathological changes in the rat hippocampus.
        Neuroscience. 1984; 12: 557-567
        • Yaffe K.
        • Ferriero D.
        • Barkovich A.J.
        • Rowley H.
        Reversible MRI abnormalities following seizures.
        Neurology. 1995; 45: 104-108
        • Hong K.-S.
        • Cho Y.-J.
        • Lee S.K.
        • Jeong S.-W.
        • Kim W.K.
        • Oh E.J.
        Diffusion changes suggesting predominant vasogenic oedema during partial status epilepticus.
        Seizure. 2004; 13: 317-321
        • Nitsch C.
        • Klatzo I.
        Regional patterns of blood-brain barrier breakdown during epileptiform seizures induced by various convulsive agents.
        J Neurol Sci. 1983; 59: 305-322
        • Sammaritano M.
        • Andermann F.
        • Melanson D.
        • Pappius H.M.
        • Camfield P.
        • Aicardi J.
        • et al.
        Prolonged focal cerebral edema associated with partial status Epilepticus.
        epilepsia. 1985; 26 (Blackwell Publishing Ltd): 334-339
        • Choy M.
        • Cheung K.K.
        • Thomas D.L.
        • Gadian D.G.
        • Lythgoe M.F.
        • Scott R.C.
        Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model.
        Epilepsy Res. 2010; 88: 221-230
        • Fabene P.F.
        • Marzola P.
        • Sbarbati A.
        • Bentivoglio M.
        Magnetic resonance imaging of changes elicited by status epilepticus in the rat brain: diffusion-weighted and T2-weighted images, regional blood volume maps, and direct correlation with tissue and cell damage.
        NeuroImage. 2003; 18: 375-389
        • Wang Y.
        • Majors A.
        • Najm I.
        • Xue M.
        • Comair Y.
        • Modic M.
        • et al.
        Postictal alteration of sodium content and apparent diffusion coefficient in epileptic rat brain induced by Kainic acid.
        Epilepsia. 1996; 37 (Blackwell Publishing Ltd): 1000-1006
        • Fisher R.S.
        • Schachter S.C.
        The postictal state: a neglected entity in the management of epilepsy.
        Epilepsy Behav. 2000; 1: 52-59
        • Koepp M.J.
        • Diehl B.
        • Woermann F.G.
        Functional neuroimaging in the postictal state.
        Epilepsy Behav. 2010; 19: 127-130
        • Mathews M.S.
        • Smith W.S.
        • Wintermark M.
        • Dillon W.P.
        • Binder D.K.
        Local cortical hypoperfusion imaged with CT perfusion during postictal Todd’s paresis.
        Neuroradiology. 2008; 16;50 (2nd ed. Springer-Verlag): 397-401
        • Rupprecht S.
        • Schwab M.
        • Fitzek C.
        • Witte O.W.
        • Terborg C.
        • Hagemann G.
        Hemispheric hypoperfusion in postictal paresis mimics early brain ischemia.
        Epilepsy Res. 2010; 89: 355-359
        • Neligan A.
        • Shorvon S.D.
        Frequency and prognosis of convulsive status epilepticus of different causes: a systematic review.
        Arch Neurol Am Med Assoc. 2010; 67: 931-940
        • Wainwright M.S.
        • Martin P.L.
        • Morse R.P.
        • Lacaze M.
        • Provenzale J.M.
        • Coleman R.E.
        • et al.
        Human herpesvirus 6 limbic encephalitis after stem cell transplantation.
        Ann Neurol. 2001; 50: 612-619
        • Scott R.C.
        Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study.
        Brain. 2003; 1;126: 2551-2557
        • Cendes F.
        • Andermann F.
        • Dubeau F.
        • Gloor P.
        • Evans A.
        • et al.
        Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study.
        Neurol. Am Acad Neurol. 2011; 23;76 (1845–5)